Chiral Tetraarylmethane Derivative with Metal-Coordinating Ability
Corresponding Author
Prof. Dr. Kouzou Matsumoto
Institute of Natural Sciences, Senshu University, 2-1-1 Higashimita, Kawasaki, Kanagawa, 214-8580 Japan
Search for more papers by this authorKaori Miki
Department of Chemistry Graduate School of Science, Osaka University, 1-1 Machikaneyamacho Toyonaka, Osaka, 560-0043 Japan
Search for more papers by this authorRina Tanaka
Department of Chemistry Graduate School of Science, Osaka University, 1-1 Machikaneyamacho Toyonaka, Osaka, 560-0043 Japan
Search for more papers by this authorTakahiro Matsuda
Faculty of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-hiroshima, 739-8521 Japan
Search for more papers by this authorCorresponding Author
Dr. Tatsuo Nehira
Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-hiroshima, 739-8521 Japan
Search for more papers by this authorDr. Yasukazu Hirao
Department of Chemistry Graduate School of Science, Osaka University, 1-1 Machikaneyamacho Toyonaka, Osaka, 560-0043 Japan
Search for more papers by this authorProf. Dr. Hiroyuki Kurata
Organization for Fundamental Education, Fukui University of Technology, 3-6-1 Gakuen, Fukui, 910-8505 Japan
Search for more papers by this authorProf. Gennaro Pescitelli
Department of Chemistry, via Moruzzi 13, University of Pisa, 56124 Pisa, Italy
Search for more papers by this authorProf. Dr. Takashi Kubo
Department of Chemistry Graduate School of Science, Osaka University, 1-1 Machikaneyamacho Toyonaka, Osaka, 560-0043 Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Kouzou Matsumoto
Institute of Natural Sciences, Senshu University, 2-1-1 Higashimita, Kawasaki, Kanagawa, 214-8580 Japan
Search for more papers by this authorKaori Miki
Department of Chemistry Graduate School of Science, Osaka University, 1-1 Machikaneyamacho Toyonaka, Osaka, 560-0043 Japan
Search for more papers by this authorRina Tanaka
Department of Chemistry Graduate School of Science, Osaka University, 1-1 Machikaneyamacho Toyonaka, Osaka, 560-0043 Japan
Search for more papers by this authorTakahiro Matsuda
Faculty of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-hiroshima, 739-8521 Japan
Search for more papers by this authorCorresponding Author
Dr. Tatsuo Nehira
Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-hiroshima, 739-8521 Japan
Search for more papers by this authorDr. Yasukazu Hirao
Department of Chemistry Graduate School of Science, Osaka University, 1-1 Machikaneyamacho Toyonaka, Osaka, 560-0043 Japan
Search for more papers by this authorProf. Dr. Hiroyuki Kurata
Organization for Fundamental Education, Fukui University of Technology, 3-6-1 Gakuen, Fukui, 910-8505 Japan
Search for more papers by this authorProf. Gennaro Pescitelli
Department of Chemistry, via Moruzzi 13, University of Pisa, 56124 Pisa, Italy
Search for more papers by this authorProf. Dr. Takashi Kubo
Department of Chemistry Graduate School of Science, Osaka University, 1-1 Machikaneyamacho Toyonaka, Osaka, 560-0043 Japan
Search for more papers by this authorAbstract
Phenyl-pyrazinyl-2-pyridyl-2-pyrimidinylmethane (1) has been synthesized in four steps from 2-(chloromethyl)pyridine. This compound is chiral and expected to show metal-coordinating ability because three of four aryl groups have the nitrogen atom at ortho-position with respect to the central carbon atom. The X-ray crystallographic analysis of rac-1 unambiguously revealed the tetraarylmethane framework, but the nitrogen atoms could not be assigned. The optical resolution of 1 was achieved by chiral HPLC. Besides the CD spectra of the two fractions exhibited opposite signs as expected, the solvent effect on the CD spectra was also observed. According to the calculated CD curve based on time-dependent density functional theory (TDDFT) method, the first eluted fraction is the R isomer in terms of absolute configuration. It should be noted that the CD spectrum of 1 was also changed by the addition of the transition metal ions because of the formation of the metal complexes of 1. The Job plot and the electrospray ionization (ESI) mass spectrum of the solution of rac-1 in the presence of Cu2+ ion revealed that the stoichiometry of 1 and Cu2+ was 2 : 1.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ajoc201900760-sup-0001-misc_information.pdf10.2 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aO. Enoki, H. Katoh, K. Yamamoto, Org. Lett. 2006, 8, 569–571;
- 1bT. Qin, G. Zhou, H. Scheiber, R. E. Bauer, M. Baumgarten, C. E. Anson, E. J. W. List, K. Müllen, Angew. Chem. Int. Ed. 2008, 47, 8292–8296;
Angew. Chem. 2008, 120, 8416–8420;
10.1002/ange.200802854 Google Scholar
- 1cM. Baroncini, S. d'Agostino, G. Bergamini, P. Ceroni, A. Comotti, P. Sozzani, I. Bassanetti, F. Grepioni, T. M. Hernandez, S. Silvi, M. Venturi, A. Credi, Nat. Chem. 2015, 7, 634–640;
- 1dA. Burgun, P. Valente, J. D. Evans, D. M. Huang, C. J. Sumby, C. J. Doonan, Chem. Commun. 2016, 52, 8850–8853;
- 1eI. Wessely, V. Mugnaini, A. Bihlmeier, G. Jeschke, S. Bräse, M. Tsotsalas, RSC Adv. 2016, 6, 55715–55719;
- 1fW. Fan, N. Liang, D. Meng, J. Feng, Y. Li, J. Hou, Z. Wang, Chem. Commun. 2016, 52, 11500–11503;
- 1gM. Marchini, M. Baroncini, G. Bergamini, P. Ceroni, M. D'Angelantonio, P. Franchi, M. Lucarini, F. Negri, T. Szreder, M. Venturi, Chem. Eur. J. 2017, 23, 6380–6390;
- 1hJ. I. Urzúa, M. Torneiro, J. Org. Chem. 2017, 82, 13231–13238.
- 2
- 2aG. R. Desiraju, Chem. Commun. 1997, 1475–1482;
- 2bJ.-H. Fournier, T. Maris, J. D. Wuest, W. Guo, E. Galoppini, J. Am. Chem. Soc. 2003, 125, 1002–1006;
- 2cY.-B. Men, J. Sun, Z.-T. Huang, Q.-Y. Zheng, CrystEngComm 2009, 11, 978–979;
- 2dJ. K. Zaręba, M. J. Białek, J. Janczak, J. Zoń, A. Dobosz, Cryst. Growth Des. 2014, 14, 6143–6153;
- 2eJ. K. Zaręba, Inorg. Chem. Commun. 2017, 86, 172–186;
- 2fC. A. Gunawardana, M. Đaković, C. B. Aakeröy, Chem. Commun. 2018, 54, 607–610.
- 3
- 3aB. F. Hoskins, R. Robson, J. Am. Chem. Soc. 1989, 111, 5962–5964;
- 3bC. B. Caputo, V. N. Vukotic, N. M. Sirizzotti, S. J. Loeb, Chem. Commun. 2011, 47, 8545–8547;
- 3cY. Yamanoi, Y. Yamamoto, M. Miyachi, M. Shimada, A. Minoda, S. Oshima, Y. Kobori, H. Nishihara, Langmuir 2013, 29, 8768–8772;
- 3dP.-Z. Li, X.-J. Wang, J. Liu, J. S. Lim, R. Zou, Y. Zhao, J. Am. Chem. Soc. 2016, 138, 2142–2145.
- 4
- 4aD. B. Amabilino, J. F. Stoddart, Chem. Rev. 1995, 95, 2725–2828;
- 4bS. Hoekman, M. O. Kitching, D. A. Leigh, M. Papmeyer, D. Roke, J. Am. Chem. 2015, 137, 7656–7659;
- 4cE. A. Neal, S. M. Goldup, Angew. Chem. Int. Ed. 2016, 55, 12488–12493;
Angew. Chem. 2016, 128, 12676–12681;
10.1002/ange.201606640 Google Scholar
- 4dJ. Y. C. Lim, T. Bunchuay, P. D. Beer, Chem. Eur. J. 2017, 23, 4700–4707.
- 5
- 5aH. M. El-Kaderi, J. R. Hunt, J. L. Mendoza-Cortés, A. P. Côté, R. E. Taylor, M. O'Keeffe, O. M. Yaghi, Science, 2007, 316, 268–272;
- 5bR. Dawson, A. I. Cooper, D. J. Adams, Prog. Polym. Sci. 2012, 37, 530–563;
- 5cY. Zhang, S. N. Riduan, Chem. Soc. Rev. 2012, 41, 2083–2094;
- 5dM Errahali, G. Gatti, L. Tei, G. Paul, G. A. Rolla, L. Canti, A. Fraccarollo, M. Cossi, A. Comotti, P. Sozzani, L. Marchese, J. Phys. Chem. C 2014, 118, 28699–28710;
- 5eA. Palma-Cando, G. Brunklaus, U. Scherf, Macromolecules 2015, 48, 6816–6824;
- 5fJ. Hynek, J. Rathouský, J. Demel, K. Lang, RSC Adv. 2016, 6, 44279–44287;
- 5gE. Troschke, S. Grätz, T. Lübken, L. Borchadt, Angew. Chem. Int. Ed. 2017, 56, 6859–6863;
Angew. Chem. 2017, 129, 6963–6967.
10.1002/ange.201702303 Google Scholar
- 6
- 6aR. Adams, J. Hine, J. Campbell, J. Am. Chem. Soc. 1949, 71, 387–390;
- 6bR. A. Benkeser, F. S. Clark, J. Org. Chem. 1962, 27, 3727–3728;
- 6cM. Shi, Y. Okamoto, S. Takamuku, Bull. Chem. Soc. Jpn., 1990, 63, 2731–2733;
- 6dT. Imaoka, H. Kitazawa, W.-J. Chun, K. Yamamoto, Angew. Chem. Int. Ed. 2015, 54, 9810–9815;
Angew. Chem. 2015, 127, 9948–9953.
10.1002/ange.201504473 Google Scholar
- 7
- 7aN. Watanabe, A. Matsugi, K. Nakano, Y. Ichikawa, H. Kotsuki, Synlett 2014, 25, 438–442;
- 7bM. Nambo, M. Yar, J. D. Smith, C. M. Crudden, Org. Lett. 2015, 17, 50–53;
- 7cM. Nambo, J. C.-H. Yim, K. G. Fowler, C. M. Crudden, Synlett 2017, 28, 2936–2940;
- 7dS. Zhang, B.-S. Kim, C. Wu, J. Mao, P. J. Walsh, Nat. Commun. 2017, 8, 14641.
- 8
- 8aK. Matsumoto, H. Nakaminami, M. Sogabe, H. Kurata, M. Oda, Tetrahedron Lett. 2002, 43, 3049–3052;
- 8bK. Matsumoto, M. Kannami, M. Oda, Tetrahedron Lett. 2003, 44, 2861–2864;
- 8cH. Kurata, Y. Oki, K. Matsumoto, T. Kawase, M. Oda, Chem. Lett. 2005, 34, 910–911;
- 8dK. Matsumoto, M. Kannami, D. Inokuchi, H. Kurata, T. Kawase, M. Oda, Org. Lett. 2007, 9, 2903–2906.
- 9
- 9aK. Matsumoto, M. Kannami, M. Oda, Chem. Lett. 2004, 33, 1096–1097;
- 9bR. Ishikawa, K. Matsumoto, K. Onishi, T. Kubo, A. Fuyuhiro, S. Hayami, K. Inoue, S. Kaizaki, S. Kawata, Chem. Lett. 2009, 38, 620–621;
- 9cC. J. Sumby, Coord. Chem. Rev. 2011, 255, 1937–1967;
- 9dN. Hirosawa, Y. Oso, T. Ishida, Chem. Lett. 2012, 41, 716–718;
- 9eY. Tsunezumi, K. Matsumoto, S. Hayami, A. Fuyuhiro, S. Kawata, Acta Crystallogr. Sect. E 2014, 70, m 96–m97.
10.1107/S160053681400289X Google Scholar
- 10
- 10aK. Matsumoto, T. Inagaki, T. Nehira, M. Kannami, D. Inokuchi, H. Kurata, T. Kawase, G. Pescitelli, M. Oda, Chem. Asian J. 2007, 2, 1031–1036;
- 10bK. Matsumoto, K. Miki, T. Inagaki, T. Nehira, G. Pescitelli, Y. Hirao, H. Kurata, T. Kawase, T. Kubo, Chirality 2011, 23, 543–548.
- 11
- 11aA. Moletti, C. Coluccini, D. Pasini, A. Taglietti, Dalton Trans. 2007, 588–1592;
- 11bM. Caricato, A. Delforge, D. Bonifazi, D. Donde, A. Mazzanti, D. Pasini, Org. Biomol. Chem. 2015, 13, 3593–3601;
- 11cM. Agnes, A. Nitti, D. A. Vander Griend, D. Dondi, D. Merli, D. Pasini, Chem. Commun. 2016, 11492–11495.
- 12K. Matsumoto, T. Tanaka, M. Oda, Synth. Commun. 2004, 34, 4037–4042.
- 13A. Abbotto, V. Alanzo, S. Bradamante, G. A. Pagani, J. Chem. Soc. Perkin Trans. 2 1991, 481–488.
- 14See Supporting Information.
- 15Crystal data for 1: C20H15N5, Mr=325.37, monoclinic, P21/n (No. 14), a=7.2051(16), b=14.656(3), c=15.046(4) Å, β=90.707(7)°, V=1588.7(6) Å3, Z=4, Dcalcd=1.360 g cm−3, T=200 K, total reflection collected=15188, unique reflection=3643 (Rint=0.103), final R factor=0.207 (Rw=0.577 for all data) for 1716 reflections (I>2σ(I)), GOF=1.86. The structure was solved by direct method and refined by full-matrix least squares by using the SHELXL-97 program. CCDC-1966624 contains the supplementary crystallographic data. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre at www.ccdc.cam.ac.uk/data_request/cif.
- 16G. Bringmann, T. Bruhn, K. Maksimenka, Y. Hemberger, Eur. J. Org. Chem., 2009, 2717–2727.
- 17
- 17aT. A. Halgren, J. Am. Chem. Soc. 1992, 114, 7827–7843;
- 17bT. A. Halgren, J. Comput. Chem. 1996, 17, 490–519;
- 17cT. A. Halgren, R. B. Nachbar, J. Comput. Chem. 1996, 17, 587–615;
- 17dT. A. Halgren, J. Comput. Chem. 1999, 20, 720–729.
- 18In the case of Co2+ and other metal ions, see Supporting Information.
- 19
- 19aK. R. Adam, P. A. Anderson, T. Astley, Ian M. Atkinson, J. M. Charnock, C. D. Garner, J. M. Gulbis, T. W. Hambley, M. A. Hitchman, F. R. Keene, E. R. T. Tiekink, J. Chem. Soc., Dalton Trans. 1997, 519–530;
- 19bP. A. Anderson, T. Astley, M. A. Hitchman, F. R. Keene, B. Moubaraki, K. S. Murray, B. W. Skelton, E. R. T. Tiekink, H. Toftlund, A. H. White, J. Chem. Soc., Dalton Trans. 2000, 3505–3512.
- 20
- 20aK. Hirose, J. Incl. Phenom. Macrocycl. Chem. 2001, 39, 193–209;
- 20bJ. S. Renny, L. L. Tomasevich, E. H. Tallmadge, D. B. Collum, Angew. Chem. Int. Ed. 2013, 52, 11998–12013;
Angew. Chem. 2013, 125, 12218–12234.
10.1002/ange.201304157 Google Scholar
- 21CONFLEX 8, H. Goto, S. Obata, N. Nakayama, K. Ohta, CONFLEX Corporation, Tokyo, Japan, 2017.
- 22
- 22aH. Goto, E. Osawa, J. Am. Chem. Soc. 1989, 111, 8950–8951;
- 22bH. Goto, E. Osawa, J. Chem. Soc. Perkin Trans. 2 1993, 187–198.
- 23Gaussian 09, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.