Benzils: A Review on their Synthesis
Dr. Saba Kauser J. Shaikh
Department of Studies in Chemistry, Karnatak University, 580003 Dharwad, India
Search for more papers by this authorCorresponding Author
Prof. Ravindra R. Kamble
Department of Studies in Chemistry, Karnatak University, 580003 Dharwad, India
Search for more papers by this authorDr. Praveen K. Bayannavar
Department of Studies in Chemistry, Karnatak University, 580003 Dharwad, India
Search for more papers by this authorProf. Mahadevappa Y. Kariduraganavar
Department of Studies in Chemistry, Karnatak University, 580003 Dharwad, India
Search for more papers by this authorDr. Saba Kauser J. Shaikh
Department of Studies in Chemistry, Karnatak University, 580003 Dharwad, India
Search for more papers by this authorCorresponding Author
Prof. Ravindra R. Kamble
Department of Studies in Chemistry, Karnatak University, 580003 Dharwad, India
Search for more papers by this authorDr. Praveen K. Bayannavar
Department of Studies in Chemistry, Karnatak University, 580003 Dharwad, India
Search for more papers by this authorProf. Mahadevappa Y. Kariduraganavar
Department of Studies in Chemistry, Karnatak University, 580003 Dharwad, India
Search for more papers by this authorAbstract
This review segregates and outlines all the aspects of the synthesis of Benzil for almost two centuries. Here, state of the art review includes the early synthesis in 1836 to the advancement made over the past years in the knowledge of the preparation of benzil derivatives till the present. Benzil is one of the important and highly underrated organic compounds in which two adjacent carbonyl groups are flanked by two phenyl rings. Apart from its diverse functionality, the reactivity of benzils proclaims its prospects as a reagent for the synthesis of various heterocycles. On recasting benzil, it is possible to obtain a wide variety of utilities in pharmaceuticals, polymer, and material chemistry. This contemplation of the review gives a general perspective of reaction routes, mechanisms and highlights the conversions due to oxidation, and accentuates benzil as an emerging putative target.
Conflict of interest
The authors declare no conflict of interest.
References
- 1H. S. Smalo, P. O. Astrand, S. Ingebrigtsen, IEEE T. Dielect. El. In. 2010, 17, 733–741.
- 2
- 2aH. R. Nace, M. Inaba, D. H. Nelander, Trans. N. Y. Acad. Sci. 1962, 25, 23–28;
- 2bH. R. Nace, D. H. Nelander, J. Org. Chem. 1964, 29, 1677–1681.
- 3
- 3aH. Wynberg, H. J. Kooreman, J. Am. Chem. Soc. 1965, 87, 1739–1742;
- 3bW. W. Paudler, J. M. Barton, J. Org. Chem. 1966, 31, 1720–1722.
- 4W. Arthur Green, in Industrial Photoinitiators – A Technical Guide, Taylor & Francis CRC Press, 2010.
10.1201/9781439827468 Google Scholar
- 5R. M. Wadkins, J. L. Hyatt, X. Wei, K.-J. P. Yoon, M. Wierdl, C. C. Edwards, C. L. Morton, J. C. Obenauer, K. Damodaran, P. Beroza, M. K. Danks, P. M. Potter, J. Med. Chem. 2005, 48, 2906–2915.
- 6K. Kuchitsu, T. Fukuyama, Y. Morino, J. Mol. Struct. 1968, 1, 463–479.
- 7G. N. Curne, D. A. Ramsay, Can. J. Phys. 1971, 317, 49.
- 8J. R. Durig, C. C. Tong, Y. S. Li, J. Chem. Phys. 1972, 57, 4425–4427.
- 9K. Hagen, K. Hedberg, J. Am. Chem. Soc. 1973, 95, 1003–1009.
- 10K. Hagen, K. Hedberg, J. Am. Chem. Soc. 1973, 95, 4796–4800.
- 11G. Chung, Y. Kwon, J. Mol. Struct. 2000, 496, 199–206.
- 12B. E. Kohler, R. T. Loda, J. Chem. Phys. 1981, 74, 5424–5429.
- 13K. K. Das, D. Majumdar, J. Mol. Struct. 1993, 288, 55–61.
10.1016/0166-1280(93)90094-R Google Scholar
- 14I. Bernal, Nature 1963, 200, 1318.
- 15Z. Pawelka, A. Koll, Th. Zeegars-Huyskens, J. Mol. Str. 2001, 597, 57–66.
- 16V. D. Filimonov, M. S. Yusubov, K.-V. Chi, Russ. Chem. Rev. 1998, 67, 725–747.
10.1070/RC1998v067n09ABEH000396 Google Scholar
- 17
- 17aF. Wöhler, J. Liebig, Ann. Pharm. 1832, 3, 249–282;
10.1002/jlac.18320030302 Google Scholar
- 17bT. Zincke, Justus Liebigs Ann. Chem. 1879, 198, 115–141;
10.1002/jlac.18791980109 Google Scholar
- 17cR. T. Arnold, R. C. Fuson, J. Am. Chem. Soc. 1936, 58, 1295–1296.
- 18
- 18aA. Laurent, Ann. Pharm. 1836, 17, 88–94;
10.1002/jlac.18360170116 Google Scholar
- 18bN. Zinin, Ann. Chem. Pharm. 1840, 34, 186–192;
10.1002/jlac.18400340205 Google Scholar
- 18cJ. H. James, J. Am. Chem. Soc. 1899, 21, 889–910;
10.1021/ja02060a005 Google Scholar
- 18dF. Zetzsche, P. Zala, Helv. Chim. Acta. 1926, 9, 288–291;
- 18eB. B. Corson, R. W. McAllister, J. Am. Chem. Soc. 1929, 51, 2822–2825.
- 19
- 19aH. H. Hatt, A. Pilgrim, W. J. Hurran, J. Chem. Soc. 1936, 0, 93–96;
- 19bE. J. Corey, J. P. Schaefer, J. Am. Chem. Soc. 1960, 82, 917–929;
10.1021/ja01489a036 Google Scholar
- 19cM. B. Floyd, M. T. Du, P. F. Fabio, L. A. Jacob, B. D. Johnson, J. Org. Chem. 1985, 50, 5022–5027.
- 20
- 20aA. McKillop, B. P. Swann, M. E. Ford, E. C. Taylor, J. Am. Chem. Soc. 1973, 95, 3641–3645;
- 20bH. T. Clarke, E. E. Dreger, Org. Synth. Coll. 1941, 1, 87, 1926, 6, 6;
- 20cP. Depreux, G. Bethegnies, A. Marcincal-Lefebvre, J. Chem. Educ. 1988, 65, 553;
- 20dM. Weiss, M. Appel, J. Am. Chem. Soc. 1948, 70, 3666–3667;
- 20eS. A. Tymonko, B. A. Nattier, R. S. Mohan, Tetrahedron Lett. 1999, 40, 7657–7659;
- 20fA. M. Paul, A. C. Khandekar, M. A. Shenoy, Synth. Commun. 2003, 33, 2581–2584;
- 20gW.-Y. Sun, N. Ueyama, A. Nakamura, Tetrahedron 1992, 48, 1557–1566;
- 20hW.-Y. Sun, N. Ueyama, A. Nakamura, Tetrahedron 1993, 49, 1357–1370;
- 20iC. Zhebin, S. Zhengui, Chin. J. Org. Chem. 2002, 22, 446–447;
- 20jM. Kirihara, Y. Ochiai, S. Takizawa, H. Takahata, H. Nemoto, Chem. Commun. 1999, 15, 1387–1388;
- 20kJ.-D. Lou, C. Zhang, G.-Q. Wang, C. Gao, Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 2009, 39, 6–8;
- 20lL.-H. Huang, Q. Wang, Y.-C. Ma, J.-D. Lou, C. Zhang, Synth. Commun. 2011, 41, 1659–1663;
- 20mA. C. Khandekar, A. M. Paul, B. M. Khadilkar, Synth. Commun. 2002, 32, 2931–2935;
- 20nG.-S. Zhang, Q.-Z. Shi, M.-F. Chen, K. Cai, Synth. Commun. 1997, 27, 953–956;
- 20oG.-S. Zhang, Q.-Z. Shi, M.-F. Chen, K. Cai, Synth. Commun. 1997, 27, 3691–3696;
- 20pN. Noroozi-Pesyan, A. H. Dabbagh, Molecules 2005, 10, 1364–1368;
- 20qR. D. Crouch, M. S. Holden, J. S. Burger, J. Chem. Educ. 2001, 78, 951–952;
- 20rK. Skobridis, V. Theodorou, E. Weber, Arkivoc 2006, 13, 102–106;
- 20sZ. Zarnegar, J. Safari, J. Exp. Nanosci. 2015, 10, 651–661.
- 21D. H. R. Barton, A. G. Brewster, R. A. H. F. Hui, D. J. Lester, S. V. Ley, T. G. Back, J. Chem. Soc. Chem. Commun. 1978, 21, 952–954.
10.1039/c39780000952 Google Scholar
- 22M. K. Chaudhuri, S. K. Chetti, S. Lyndem, P. C. Paul, P. Srinivas, Bull. Chem. Soc. Jpn. 1994, 67, 1894–1898.
- 23S. Kondo, M. Ohira, S. Kawasoe, H. Kunisada, Y. Yuki, J. Org. Chem. 1993, 58, 5003–5004.
- 24W. Rigby, J. Chem. Soc. 1951, 0, 793–795.
- 25H. Firouzabadi, E. Mottghinejad, M. Seddighi, Synthesis 1989, 5, 378–380.
10.1055/s-1989-27256 Google Scholar
- 26H. Firouzabadi, D. Mohajer, M. Entezari-Moghadam, Bull. Chem. Soc. Jpn. 1988, 61, 2185–2189.
- 27F. Habib, M.-B. Iraj, Bull. Chem. Soc. Jpn. 1995, 68, 2319–2325.
- 28H. Firouzabadi, N. Iranpoor, F. Kiaeezadeh, J. Toofan, Tetrahedron 1986, 42, 719–725.
- 29H. Firouzabadi, A. Sardarian, H. Badparva, Bull. Chem. Soc. Jpn. 1996, 69, 685–691.
- 30M. Frigerio, M. Santagostino, S. Sputore, G. Palmisano, J. Org. Chem. 1995, 60, 7272–7276.
- 31P. Laszlo, Ed. B. Trost, in Comprehensive Organic Synthesis, New York, Pergamon Press, 1991, 7, 839.
10.1016/B978-0-08-052349-1.00215-8 Google Scholar
- 32L. DeLaude, P. Laszlo, J. Org. Chem. 1996, 61, 6360–6370.
- 33
- 33aB. Lou, L. Dai, Youji Huaxue 1990, 10, 357;
- 33bB. Lou, L. Dai, Chem. Abstr. 1991, 114, 5950.
- 34X. Ding, G. Liu, Z. Teng, W. Xu, Youji Huaxue 1990, 10, 366; Chem. Abstr. 1991, 114, 5951.
- 35K. Akiba, H. Ohnari, K. Ohkata, Chem. Lett. 1985, 14, 1577–1580.
- 36H.-J. Bestmann, J. Lienert, L. Mott, Liebigs Ann. Chem. 1968, 718, 24.
- 37
- 37aM. Piao, Huaxue Yu Nianhe 1994, 2, 78;
- 37bM. Piao, Chem. Abstr. 1994, 121, 157.
- 38X. Kangyuan, C. Qiang, W. Jiayao, L. Qingqing, Z. Hu, Chinese J. Applied. Chem. 2016, 33, 1284–1288.
- 39J. Safari, Z. Zarnegar, F. Rahimi, J. Chem. 2013, 2013, Article ID 765376, 1–7, https://doi.org/10.1155/2013/765376.
- 40M. Mousavi, H. Seyfi, Org. Chem. 2014, 3, 28–33.
- 41A. J. Fatiadi, Synthesis 1987, 2, 85–127.
10.1055/s-1987-27859 Google Scholar
- 42L.-Z. Yuan, A. Hamze, M. Alami, O. Provot, Synthesis 2017, 49, 504–525.
- 43M. E. Jung, G. Deng, Org. Lett. 2014, 16, 2142–2145.
- 44Z. Zhu, J. H. Espenson, J. Org. Chem. 1995, 60, 7728–7732.
- 45W. Ren, J. Liu, L. Chen, X. Wan, Adv. Synth. Catal. 2010, 352, 1424–1428.
- 46Y. Xu, X. Wan, Tetrahedron Lett. 2013, 54, 642–645.
- 47
- 47aJ. Tummatorn, P. Khorphueng, A. Petsom, N. Muangsin, N. Chaichit, S. Roengsumran, Tetrahedron 2007, 63, 11878–11885;
- 47bY. Miao, A. Dupé, C. Bruneau, C. Fischmeister, Eur. J. Org. Chem. 2014, 23, 5071–5077.
- 48J. Nan, J. Zhang, Y. Hu, C. Wang, T. Wang, W. Wang, Y. Ma, M. Szostak, Org. Lett. 2021, 23, 1928–1933.
- 49W. Zhang, J. Zhang, Y. Liu, Z. Xu, Synlett 2013, 24, 2709–2714.
- 50
- 50aJ. Moon, M. Jeong, H. Nam, J. Ju, J. H. Moon, H. M. Jung, S. Lee, Org. Lett. 2008, 10, 945–948;
- 50bK. Park, S. Lee, RSC Adv. 2013, 3, 14165–14182.
- 51H. Min, T. Palani, K. Park, J. Hwang, S. Lee, J. Org. Chem. 2014, 79, 6279–6285.
- 52N. Xu, D.-W. Gu, Y.-S. Dong, F.-P. Yi, L. Cai, X.-Y. Wu, X.-X. Guo, Tetrahedron Lett. 2015, 56, 1517–1519.
- 53X.-F. Xia, Z. Gu, W. Liu, N. Wang, H. Wang, Y. Xia, H. Gao, X. Liu, Org. Biomol. Chem. 2014, 12, 9909–9913.
- 54R. Gujjarappa, N. Vodnala, V. P. R. K. Putta, V. G. Reddy, C. C. Malakar, Tetrahedron Lett. 2020, 61, 151588.
- 55C.-F. Xu, M. Xu, Y.-X. Jia, C.-Y. Li, Org. Lett. 2011, 13, 1556–1559.
- 56Y. Liu, X. Chen, J. Zhang, Z. Xu, Synlett 2013, 24, 1371–1376.
- 57H. Firouzabadi, A. R. Sardarian, H. Moosavipour, G. M. Afshari, Synthesis 1986, 4, 285–288.
10.1055/s-1986-31585 Google Scholar
- 58A. Giraud, O. Provot, J.-F. Peyrat, M. Alami, J.-D. Brion, Tetrahedron 2006, 62, 7667–7673.
- 59S. Enthaler, ChemCatChem. 2011, 3, 1929–1934.
- 60
- 60aK.-W. Chi, M. S. Yusubov, V. D. Filimonov, Synth. Commun. 1994, 24, 2119–2122;
- 60bM. S. Yusubov, V. D. Filimonov, V. P. Vasilyeva, K.-W. Chi, Synthesis 1995, 10, 1234–1236.
10.1055/s-1995-4094 Google Scholar
- 61
- 61aR. D. Stephens, C. E. Castro, J. Org. Chem. 1963, 28, 3313–3315;
- 61bT. A. Prikhod′ko, S. F. Vasilevsky, Izv. Akad. Nauk Ser. Khim.) Russ. Chem. Bull. 2001, 50, 1268–1273.
- 62M. S. Yusubov, G. A. Zholobova, S. F. Vasilevsky, E. V. Tretyakov, D. W. Knight, Tetrahedron 2002, 58, 1607–1610.
- 63C. Xu, L. Xiaolong, W. Weili, H. Wenmei, H. Li, W. Yong, Chem. Res. Chin. Univ. 2015, 31, 53–59.
10.3866/PKU.DXHX201603035 Google Scholar
- 64S. Mori, M. Takubo, T. Yanase, T. Maegawa, Y. Monguchi, H. Sajiki, Adv. Synth. Catal. 2010, 352, 1630–1634.
- 65C. Mousset, O. Provot, A. Hamze, J. Bignon, J.-D. Brion, M. Alami, Tetrahedron. 2008, 64, 4287–4294.
- 66C. Mousset, A. Giraud, O. Provot, A. Hamze, J. Bignon, J−M. Liu, S. Thoret, J. Dubois, J.-D. Brion, M. Alami, Bioorg. Med. Chem. Lett. 2008, 18, 3266–3271.
- 67Y. Sawama, M. Takubo, S. Mori, Y. Monguchi, H. Sajiki, Eur. J. Org. Chem. 2011, Vol. 2011, 18, 3361–3367.
- 68N. A. Khan, M. S. Newman, J. Org. Chem. 1952, 17, 1063–1065.
- 69D. G. Lee, V. S. Chang, J. Org. Chem. 1979, 44, 2726–2730.
- 70
- 70aS. Trosien, S. R. Waldvogel, Org. Lett. 2012, 14, 2976–2979;
- 70bC. J. Walsh, B. K. Mandal, J. Org. Chem. 1999, 64, 6102–6105;
- 70cX. Deng, N. S. Mani, Org. Lett. 2006, 8, 269–272.
- 71N. S. Srinivasan, D. G. Lee, J. Org. Chem. 1979, 44, 1574.
- 72
- 72aM. S. Yusubov, V. D. Filimonov, Zh. Org. Khim. 1989, 25, 218;
- 72bM. S. Yusubov, V. D. Filimonov, Zh. Org. Khim. 1989, 25, 1561;
- 72cM. S. Yusubov, V. D. Filimonov, V. D. Ogorodnikov, Izv. Akad. Nauk SSSR Ser. Khim. 1991, 4, 868–873.
- 73M. S. Yusubov, V. D. Filimonov, Synthesis 1991, 2, 131–132.
10.1055/s-1991-26397 Google Scholar
- 74E. J. Foster, J. Babuin, N. Nguyen, V. E. Williams, Chem. Commun. 2004, 18, 2052–2053.
- 75K. Lau, J. Foster, V. Williams, Chem. Commun. 2003, 17, 2172–2173.
- 76
- 76aB. Mohr, G. Wegner, K. Ohta, J. Chem. Soc. Chem. Commun. 1995, 995–996;
- 76bJ. Babuin, J. Foster, V. E. Williams, Tetrahedron Lett. 2003, 44, 7003–7005.
- 77
- 77aV. B. Sharma, S. L. Jain, B. Sain, Catal. Lett. 2004, 98, 141–143;
- 77bV. B. Sharma, S. L. Jain, B. Sain, Tetrahedron Lett. 2003, 44, 383–386.
- 78B. Mohr, V. Enkelmann, G. Wegner, J. Org. Chem. 1994, 59, 635–638.
- 79A. N. Cammidge, H. Gopee, Chem. Commun. 2002, 9, 966–967.
- 80
- 80aK. Sakthivel, K. Srinivasan, Eur. J. Org. Chem. 2011, 2011, 2781–2784;
- 80bK. Sakthivel, K. Srinivasan, Eur. J. Org. Chem. 2013, 2013, 3386–3396.
- 81M. Niu, H. Fu, Y. Jiang, Y. Zhao, Synthesis 2008, 18, 2879–2882.
- 82S. Jiang, Y. Li, X. Luo, G. Huang, Y. Shao, D. Li, B. Li, Tetrahedron Lett. 2018, 59, 3249–3252.
- 83M. Tingoli, M. Mazzella, B. Panunzi, A. Tuzi, Eur. J. Org. Chem. 2011, 2011, 399–404.
- 84V. O. Rogatchov, V. D. Filimonov, M. S. Yusubov, Synthesis 2001, 7, 1001–1003.
- 85Z. Wan, C. D. Jones, D. Mitchell, J. Y. Pu, T. Y. Zhang, J. Org. Chem. 2006, 71, 826–828.
- 86U. Wille, J. Andropof, Aust. J. Chem. 2007, 60, 420–428.
- 87C.-F. Su, W.-P. Hu, J. K. Vandavasi, C.-C. Liao, C.-Y. Hung, J.-J. Wang, Synlett 2012, 23, 2132–2136.
- 88A. McKillop, O. H. Oldenziel, B. P. Swann, E. C. Taylor, R. L. Robey, J. Am. Chem. Soc. 1973, 95, 1296–1301.
- 89J.-H. Chu, Y.-J. Chen, M.-J. Wu, Synthesis 2009, 13, 2155–2162.
- 90J. K. Stille, D. D. Whitehurst, J. Am. Chem. Soc. 1964, 86, 4871–4876.
- 91J. L. Alterman, D. X. Vang, M. R. Stroud, L. J. Halverson, G. A. Kraus, Org. Lett. 2020, 22, 7424–7426.
- 92
- 92aJ. Tsuji, Pure Appl. Chem. 1999, 71, 1539–1547;
- 92bJ. M. Takacs, X.-T. Jiang, Curr. Org. Chem. 2003, 7, 369–396;
- 92cC. N. Cornell, M. S. Sigman, Inorg. Chem. 2007, 46, 1903–1909;
- 92dV. Kotov, C. C. Scarborough, S. S. Stahl, Inorg. Chem. 2007, 46, 1910–1923.
- 93W. Ren, Y. Xia, S.-J. Ji, Y. Zhang, X. Wan, J. Zhao, Org. Lett. 2009, 11, 1841–1844.
- 94S. Byun, J. Chung, T. Lim, J. Kwon, B. M. Kim, RSC Adv. 2014, 4, 34084–34088.
- 95
- 95aC. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev. 2013, 113, 5322–5363;
- 95bJ. Xuan, W.-J. Xiao, Angew. Chem. Int. Ed. 2012, 51, 6828–38; Angew. Chem. 2012, 124, 6934–6944;
- 95cY. Xi, H. Yi, A. Lei, Org. Biomol. Chem. 2013, 11, 2387–2403;
- 95dH. Cano-Yelo, A. Deronzier, Tetrahedron Lett. 1984, 25, 5517–5520;
- 95eY. Su, L. Zhang, N. Jiao, Org. Lett. 2011, 13, 2168–2171;
- 95fT. Hering, T. Slanina, A. Hancock, U. Wille, B. König, Chem. Commun. 2015, 51, 6568–6571;
- 95gS. Fukuzumi, K. Ohkubo, Chem. Sci. 2013, 4, 561–574;
- 95hD. A. Nicewicz, T. M. Nguyen, ACS Catal. 2014, 4, 355–360.
- 96X. Liu, T. Cong, P. Liu, P. Sun, J. Org. Chem. 2016, 81, 7256–7261.
- 97T. Nobuta, N. Tada, K. Hattori, S. Hirashima, T. Miura, A. Itoh, Tetrahedron Lett. 2011, 52, 875–877.
- 98K. B. Sharpless, R. F. Lauer, O. Repic, A. Y. Teranishi, D. R. Williams, J. Am. Chem. Soc. 1971, 93, 3303–3304.
- 99M. S. Yusubov, V. D. Filimonov, V. D. Ogorodnikov, Bull. Acad. Sci. USSR Div. Chem. Sci. (Engl. Transl.) 1991, 40, 766–770.
10.1007/BF00958570 Google Scholar
- 100M. S. Yusubov, E. A. Krasnokutskaya, V. D. Filimovov, L. F. Kovaleva, Chem. Heterocycl. Compd. 1992, 28, 1260–1263.
10.1007/BF00532073 Google Scholar
- 101X. Zeng, C. Miao, S. Wang, C. Xia, W. Sun, RSC Adv. 2013, 3, 9666–9669.
- 102
- 102aG. S. Lal, G. P. Pez, R. G. Syvret, Chem. Rev. 1996, 96, 1737–1756;
- 102bB. Baasner, H. Hagemann, J. C. Tatlow, In Methods of Organic Chemistry (Houben-Weyl) Organo-Fluorine Compounds; Ed. G. G. Furin, Georg Thieme Verlag: New York, 1999, 432–499.
- 103S. Manandhar, R. P. Singh, G. V. Eggers, J. M. Shreeve, J. Org. Chem. 2002, 67, 6415–6420.
- 104G. M. Scheuermann, L. RuZemi, P. Steurer, W. Bannwarth, R. Mülhaupt, J. Am. Chem. Soc. 2009, 131, 8262–8270.
- 105D. R. Dreyer, H.-P. Jia, C. W. Bielawski, Angew. Chem. Int. Ed. 2010, 49, 6813–6816;
Angew. Chem. 2010, 122, 6965–6968.
10.1002/ange.201002160 Google Scholar
- 106G. R. Geier III, T. Sasaki, Tetrahedron 1999, 55, 1859–1870.
- 107
- 107aL. F. Tietze, Chem. Rev. 1996, 96, 115–136;
- 107bI. Ryu, N. Sonoda, D. P. Curran, Chem. Rev. 1996, 96, 177–194;
- 107cT. A. Cernak, T. H. Lambert, J. Am. Chem. Soc. 2009, 131, 3124–3125;
- 107dD. J. Hardee, T. H. Lambert, J. Am. Chem. Soc. 2009, 131, 7536–7537.
- 108
- 108aS. Suga, D. Yamada, J. I. Yoshida, Chem. Lett. 2010, 394, 404–406;
- 108bJ. Yoshida, K. Saito, T. Nokami, A. Nagaki, Synlett 2011, 9, 1189–1194.
- 109Y. Ashikari, T. Nokami, J. Yoshida, J. Am. Chem. Soc. 2011, 133, 11840–11843.
- 110
- 110aK. D. Moeller, Tetrahedron 2000, 56, 9527–9554;
- 110bH. Lund, J. Electrochem. Soc. 2002, 149, 21–33;
- 110cJ. B. Sperry, D. L. Wright, Chem. Soc. Rev. 2006, 35, 605–621;
- 110dJ. Yoshida, K. Kataoka, R. Horcajada, A. Nagak, Chem. Rev. 2008, 108, 2265–2299.
- 111J. Yoshida, S. Suga, S. Suzuki, N. Kinomura, A. Yamamoto, K. Fujiwara, J. Am. Chem. Soc. 1999, 121, 9546–9549.
- 112S. Suga, S. Suzuki, A. Yamamoto, J. Yoshida, J. Am. Chem. Soc. 2000, 122, 10244–10245.
- 113M. Okajima, K. Soga, T. Nokami, S. Suga, J. Yoshida, Org. Lett. 2006, 8, 5005–5007.
- 114
- 114aS. M. Halas, K. Okyne, A. J. Fry, Electrochim. Acta. 2003, 48, 1837–1844;
- 114bU.-St. Bäumer, H. J. Schäfer, J. Appl. Electrochem. 2005, 35, 1283–1292;
- 114cT. Shono, Y. Matsumura, T. Hashimoto, K. Hibino, H. Hamaguchi, T. Aoki, J. Am. Chem. Soc. 1975, 97, 2546–2548.
- 115F. A. Khan, Ch. Sudheer, Adv. Synth. Catal. 2009, 351, 939–944.
- 116
- 116aS. Chen, Z. Liu, E. Shi, L. Chen, W. Wei, H. Li, Y. Cheng, X. Wan, Org. Lett. 2011, 13, 2274–2277;
- 116bD. H. Slee, S. J. Romano, J. Yu, T. N. Nguyen, J. K. John, N. K. Raheja, F. U. Axe, T. K. Jones, W. C. Ripka, J. Med. Chem. 2001, 44, 2094–2107.
- 117S. Astin, L. De V. Moulds, H. L. Riley, J. Chem. Soc. 1935, 0, 901–904.
- 118V. G. Jadhav, S. A. Sarode, J. M. Nagarkar, Tetrahedron Lett. 2017, 58, 1834–1838.
- 119A. V. Kel′in, A. Maioli, Curr. Org. Chem. 2003, 7, 1855–1886.
- 120N. Tada, M. Shomura, H. Nakayama, T. Miura, A. Itoh, Synlett 2010, 13, 1979–1983.
- 121L. Huang, K. Cheng, B. Yao, Y. Xie, Y. Zhang, J. Org. Chem. 2011, 76, 5732–5737.
- 122Y. Yuan, H. Zhu, Eur. J. Org. Chem. 2012, 2, 329–333.
- 123C. Zhang, X. Wang, N. Jiao, Synlett 2014, 10, 1458–1460.
- 124
- 124aR. Ciriminna, G. Palmisano, M. Pagliaro, ChemCatChem. 2015, 7, 552–558;
- 124bB. L. Ryland, S. S. Stahl, Angew. Chem. Int. Ed. 2014, 53, 8824–8838;
- 124cO. G. Mancheño, T. Stopka, Synthesis 2013, 12, 1602–1611;
- 124dR. Ciriminna, M. Pagliaro, Org. Process Res. Dev. 2010, 14, 245–251.
- 125P.-J. Zhou, C.-K. Li, S.-F. Zhou, A. Shoberu, J.-P. Zou, Org. Biomol. Chem. 2017, 15, 2629–2637.
- 126J.-L. Zhu, Y.-T. Tsai, J. Org. Chem. 2021, 86, 813–828.
- 127L.-S. Chen, L.-B. Zhang, Y. Tian, J.-H. Li, Y.-Q. Liu, Eur. J. Org. Chem. 2020, 2020, 5523–5526.
- 128F. Fringuellia, R. Germani, F. Pizzo, G. Savelli, Synth. Commun. 1989, 19, 1939–1943.
- 129
- 129aX.-F. Zhao, C. Zhang, Synthesis 2007, 4, 551–557;
- 129bP. L. Anelli, S. Banfi, F. Montanari, S. Quici, J. Org. Chem. 1989, 54, 2970–2972;
- 129cM. G. Banwell, V. S. Bridges, J. R. Dupuche, S. L. Richards, J. M. Walter, J. Org. Chem. 1994, 59, 6338–6343;
- 129dT. Inokuchi, S. Matsumoto, T. Nisiyama, S. Torii, Synlett 1990, 1, 57–58.
10.1055/s-1990-20988 Google Scholar
- 130S. Campestrini, F. D. Furia, G. Modena, O. Bortolini, J. Org. Chem. 1990, 55, 3658–3660.
- 131
- 131aT. Iwahama, S. Sakaguchi, Y. Nishiyama, Y. Ishii, Tetrahedron Lett. 1995, 36, 1523–1526;
- 131bT. Iwahama, S. Sakaguchi, Y. Nishiyama, Y. Ishii, Tetrahedron Lett. 1995, 36, 6923–6926.
- 132J. M. Khurana, B. M. Kandpal, Tetrahedron Lett. 2003, 44, 4909–4912.
- 133J. M. Khurana, A. Lumb, A. Chaudhary, Monatsh. Chem. 2017, 148, 381–386.
- 134S. L. Jain, V. B. Sharma, B. Sain, Tetrahedron Lett. 2004, 45, 1233–1235.
- 135S. L. Jain, V. B. Sharma, B. Sain, Synth. Commun. 2005, 35, 465–469.
- 136X.-F. Zhao, C. Zhang, Synthesis 2007, 4, 0551–0557.
- 137C. Tüzün, M. Ogliaruso, E. I. Becker, Org. Synth. Coll. 1973, 5, 111; 1961, 41, 1.
- 138P. Girard, J. L. Namy, H. B. Kagan, J. Am. Chem. Soc. 1980, 102, 2693–2698.
- 139P. Girard, R. Couffignal, H. B. Kagan, Tetrahedron Lett. 1991, 22, 3959–5960.
- 140
- 140aB. J. Wakefield, in Best Synthetic methods – Organolithium Methods, Academic Press, San Diego, 1988, 17, 189;
- 140bB. J. Wakefield, in The Chemistry of Organolithium Compounds, Pergamon Press, New York, 1974, 335.
- 141U. T. Mueller-Westerhoff, M. Zhou, Tetrahedron Lett. 1993, 34, 571–574.
- 142H. Sakurai, K. Tanabe, K. Narasaka, Chem. Lett. 2000, 29, 168–169.
10.1246/cl.2000.168 Google Scholar
- 143X. Jing, X. Pan, Z. Li, Y. Shi, C. Yan, Synth. Commun. 2009, 39, 492–496.
- 144K. Iwamoto, M. Hamaya, N. Hashimoto, H. Kimura, Y. Suzuki, M. Sato, Tetrahedron Lett. 2006, 47, 7175–7177.
- 145X. Bi, L. Wu, C. Yan, X. Jing, H. Zhu, J. Chil. Chem. Soc. 2011, 56, 663–664.
- 146Q. Zhang, C.-M. Xu, J.-X. Chen, X.-L. Xu, J.-C. Ding, H.-Y. Wu, Appl. Organomet. Chem. 2009, 23, 524–526.
- 147M. R. Rohman, I. Kharkongor, M. Rajbangshi, H. Mecadon, B. M. Laloo, P. R. Sahu, I. Kharbangar, B. Myrboh, Eur. J. Org. Chem. 2012, 2, 320–328.
- 148
- 148aH. A. Riley, A. R. Gray, Org. Synth. Coll. 1943, 2, 509; 1935, 15, 67;
- 148bE. J. Corey, J. P. Schaefer, J. Am. Chem. Soc. 1960, 82, 917–929.
10.1021/ja01489a036 Google Scholar
- 149R. C. Fuson, W. S. Emerson, H. W. Gray, J. Am. Chem. Soc. 1939, 61, 480–482.
- 150J.-C. Xiang, Y. Cheng, M. Wang, Y.-D. Wu, A.-X. Wu, Org. Lett. 2016, 18, 4360–4363.
- 151
- 151aA. Friedman, W. Gugig, L. Mehr, E. I. Becker, J. Org. Chem. 1959, 24, 516–520;
- 151bE. R. Bockstahler, D. L. Wright, J. Am. Chem. Soc. 1949, 71, 3760–3763.
- 152H. Zhang, X. Ren, W. Zhao, X. Tang, G. Wang, Adv. Synth. Catal. 2017, 359, 395–401.
- 153D. Ragno, O. Bortolini, P. P. Giovannini, A. Massi, S. Pacifico, A. Zaghi, Org. Biomol. Chem. 2014, 12, 5733–5744.
- 154K. H. Kim, B. R. Park, J. W. Lim, J. N. Kim, Tetrahedron Lett. 2011, 52, 3463–3466.
- 155F. D. Chattaway, E. A. Coulson, J. Chem. Soc. 1926, 129, 1070–1073.
10.1039/JR9262901070 Google Scholar
- 156R. Maruyama, M. Nishizawa, Y. Itoi, S. Ito, M. Inoue, J. Biotechnol. 2002, 94, 157–169.
- 157C. Qi, H. Jiang, L. Huang, Z. Chen, H. Chen, Synthesis 2011, 3, 387–396.
- 158S. Cacchi, G. Fabrizi, A. Goggiamani, A. Iazzetti, R. Verdiglione, Synthesis 2013, 45, 1701–1707.
- 159J.-W. Yu, S. Mao, Y.-Q. Wang, Tetrahedron Lett. 2015, 56, 1575–1580.
- 160R. Chebolu, A. Bahuguna, R. Sharma, V. K. Mishra, P. C. Ravikumar, Chem. Commun. 2015, 51, 15438–15441.
- 161A. McKillop, B. P. Swann, Tetrahedron Lett. 1970, 60, 5281–5284.
- 162E. C. Taylor, R. A. Conley, D. K. Johnson, J. Org. Chem. 1980, 45, 3433–3436.
- 163Z. Li, J. Yin, G. Wen, T. Li, X. Shen, RSC Adv. 2014, 4, 32298–32302.
- 164H. Bansode, G. Suryavanshi, ACS Omega. 2019, 4, 9636–9644.
- 165S. Cao, S. Zhong, L. Xin, J.-P. Wan, C. Wen, ChemCatChem. 2015, 7, 1478–1482.
- 166L. Yunkui, W. Heng, Z. Jian, Chinese Patent No. CN104926628B Patented 2016. Aug. 24.
- 167A. Sieber, H. Kny, W. H. Oliver, United States Patent No. 3,829,496 Patented 1974. Aug. 13.
- 168Y. Su, L. Zhang, N. Jiao, Org. Lett. 2011, 13, 2168–2171.
- 169M. Hayashi, M. Shibuya, Y. Iwabuchi, Synlett 2012, 23, 1025–1030.
- 170D. H. Hunter, D. H. R. Barton, W. J. Motherwell, Tetrahedron Lett. 1984, 25, 603–606.
- 171L. Ruan, M. Shi, N. Li, X. Ding, F. Yan, J. Tang, Org. Lett. 2014, 16, 733–735.
- 172D. Villemin, M. Hammadi, Synth. Commun. 1995, 25, 3145–3148.
- 173J. S. Yadav, S. K. Biswas, R. Srinivas, Synthesis 2006, 24, 4237–4241.
- 174R. Gujjarappa, N. Vodnala, A. Kandpal, L. Roy, S. Gupta, C. C. Malakar, Org. Chem. Front. 2021, 8, 5389–5396.