Continuous Flow Synthesis of Five-Membered N-Heterocycles by Ynone System
Tamilselvan Duraisamy
Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708 Taiwan, ROC
Search for more papers by this authorVijay Thavasianandam Seenivasan
Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708 Taiwan, ROC
Search for more papers by this authorLi-Yu Wang
Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708 Taiwan, ROC
Search for more papers by this authorDr. Karthick Govindan
Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708 Taiwan, ROC
Search for more papers by this authorDr. Balaji Ganesan
Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708 Taiwan, ROC
Search for more papers by this authorDr. Mohanraj Kandasamy
Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708 Taiwan, ROC
Search for more papers by this authorYu-Ting Chiou
Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708 Taiwan, ROC
Search for more papers by this authorCorresponding Author
Prof. Dr. Wei-Yu Lin
Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708 Taiwan, ROC
Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708 Taiwan, ROC
Drug Development and Value Creation Research Centre, Kaohsiung Medical University, Kaohsiung, 80708 Taiwan, ROC
Search for more papers by this authorTamilselvan Duraisamy
Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708 Taiwan, ROC
Search for more papers by this authorVijay Thavasianandam Seenivasan
Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708 Taiwan, ROC
Search for more papers by this authorLi-Yu Wang
Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708 Taiwan, ROC
Search for more papers by this authorDr. Karthick Govindan
Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708 Taiwan, ROC
Search for more papers by this authorDr. Balaji Ganesan
Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708 Taiwan, ROC
Search for more papers by this authorDr. Mohanraj Kandasamy
Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708 Taiwan, ROC
Search for more papers by this authorYu-Ting Chiou
Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708 Taiwan, ROC
Search for more papers by this authorCorresponding Author
Prof. Dr. Wei-Yu Lin
Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708 Taiwan, ROC
Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708 Taiwan, ROC
Drug Development and Value Creation Research Centre, Kaohsiung Medical University, Kaohsiung, 80708 Taiwan, ROC
Search for more papers by this authorAbstract
In this study, we devised a practical and effective method for synthesizing ynones from terminal alkynes and anhydride utilizing a continuous flow apparatus at ambient temperature. Moreover, we coupled the ynones with hydrazines, and hydroxylamine hydrochloride to synthesize pyrazole and isoxazole derivatives. This protocol's unique characteristics include a metal-free approach, mild reaction conditions, a short residence time, and a wide range of functional group tolerance. Sustainable strategies are most useful and affordable than conventional benchtop approaches.
Conflict of Interests
“There are no conflicts to declare”.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ajoc202400359-sup-0001-misc_information.pdf7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aH. Jiang, X. Pan, L. Huang, J. Zhao, D. Shi, Chem. Commun. 2012, 48, 4698–4700;
- 1bA. S. Karpov, T. J. Müller, Org. Lett. 2003, 5, 3451–3454;
- 1cM. Ono, H. Watanabe, R. Watanabe, M. Haratake, M. Nakayama, H. Saji, Bioorg. Med. Chem. Lett. 2011, 21, 117–120;
- 1dZ. She, D. Niu, L. Chen, M. A. Gunawan, X. Shanja, W. H. Hersh, Y. Chen, J. Org. Chem. 2012, 77, 3627–3633;
- 1eJ. Su, K. Zhang, M. Zhuang, F. Ma, W. Q. Zhang, H. Sun, G. Zhang, Y. Jian, Z. Gao, Asian J. Org. Chem. 2019, 8, 482–486;
- 1fT. R. Ward, B. J. Turunen, T. Haack, B. Neuenswander, W. Shadrick, G. I. Georg, Tetrahedron Lett. 2009, 50, 6494–6497.
- 2
- 2aS. Alsalameh, M. Burian, G. Mahr, B. Woodcock, G. Geisslinger, Aliment. Pharmacol. Ther. 2003, 17, 489–501;
- 2bŞ. G. Küçükgüzel, İ. Coşkun, S. Aydın, G. Aktay, Ş. Gürsoy, Ö. Çevik, Ö. B. Özakpınar, D. Özsavcı, A. Şener, N. Kaushik-Basu, Molecules 2013, 18, 3595–3614;
- 2cS. Mor, R. Punia, M. Khatri, D. Kumar, A. Kumar, D. K. Jindal, N. Singh, R. Sharma, M. Ahmed, S. Shukla, J. Mol. Struct. 2024, 1296, 136759;
- 2dA. Naeem, N. Jahan, M. Khan, G. Abbas, F. Siddiqui, M. Khalid, W. Farooqui, Biomedicines 2023, 11, 2214;
- 2eD. A. Rodríguez-Soacha, J. Fender, Y. A. Ramírez, J. A. Collado, E. Muñoz, R. Maitra, C. Sotriffer, K. Lorenz, M. Decker, ACS Chem. Neurosci. 2021, 12, 1632–1647.
- 3
- 3aR. E. Whittaker, A. Dermenci, G. Dong, Synthesis 2016, 48, 161–183;
- 3bB. H. Xu, G. Kehr, R. Fröhlich, B. Wibbeling, B. Schirmer, S. Grimme, G. Erker, Angew. Chem. Int. Ed. 2011, 31, 7183–7186.
10.1002/anie.201101051 Google Scholar
- 4
- 4aJ. T. DePinto, W. A. deProphetis, J. L. Menke, R. J. McMahon, J. Am. Chem. Soc. 2007, 129, 2308–2315;
- 4bT. Tang, X.-D. Fei, Z.-Y. Ge, Z. Chen, Y.-M. Zhu, S.-J. Ji, J. Org. Chem. 2013, 78, 3170–3175.
- 5
- 5aD. A. Alonso, C. Nájera, M. C. Pacheco, J. Org. Chem. 2004, 69, 1615–1619;
- 5bH. Yuan, Y. Shen, S. Yu, L. Shan, Q. Sun, W. Zhang, Synth. Commun. 2013, 43, 2817–2823.
- 6
- 6aC.-X. Guo, B. Yu, J.-N. Xie, L.-N. He, Green Chem. 2015, 17, 474–479;
- 6bX. Liu, X. Li, L. Liu, T. Huang, W. Chen, M. Szostak, T. Chen, ACS Catal. 2023, 13, 5819–5827.
- 7W. Xiong, B. Wu, B. Zhu, X. Tan, L. Wang, W. Wu, C. Qi, H. Jiang, ChemCatChem 2021, 13, 2843–2851.
- 8S.-J. Yim, M.-H. Kim, D.-K. An, Bull. Korean Chem. Soc. 2010, 31, 286–290.
- 9I. Arellano, F. Rodríguez-Ramos, M. González-Andrade, A. Navarrete, M. Sharma, N. Rosas, P. Sharma, J. Heterocycl. Chem. 2016, 53, 1147–1154.
- 10S. Fu, S. Yao, S. Guo, G.-C. Guo, W. Yuan, T.-B. Lu, Z.-M. Zhang, J. Am. Chem. Soc. 2021, 143, 20792–20801.
- 11Y. Wu, L. Zeng, H. Li, Y. Cao, J. Hu, M. Xu, R. Shi, H. Yi, A. Lei, J. Am. Chem. Soc. 2021, 143, 12460–12466.
- 12
- 12aS. Karabiyikoglu, M. Zora, Appl. Organomet. Chem. 2016, 30, 876–885;
- 12bM. Zora, A. Kivrak, J. Org. Chem. 2011, 76, 9379–9390.
- 13
- 13aI. R. Baxendale, S. C. Schou, J. Sedelmeier, S. V. Ley, Chem. Eur. J. 2010, 16, 89–94;
- 13bJ.-S. Poh, D. L. Browne, S. V. Ley, React. Chem. Eng. 2016, 1, 101–105.
- 14H.-L. Liu, H.-F. Jiang, M. Zhang, W.-J. Yao, Q.-H. Zhu, Z. Tang, Tetrahedron Lett. 2008, 49, 3805–3809.
- 15G. R. Kumar, Y. K. Kumar, M. S. Reddy, Chem. Comm. 2016, 52, 6589–6592.
- 16S. Kobayashi, Chem. Asian J. 2016, 11, 425–436.
- 17
- 17aL. Degennaro, D. Maggiulli, C. Carlucci, F. Fanelli, G. Romanazzi, R. Luisi, Chem. Comm 2016, 52, 9554–9557;
- 17bH. Kim, H. J. Lee, D. P. Kim, Angew. Chem. Int. Ed. 2015, 54, 1877–1880;
- 17cH. Kim, K.-I. Min, K. Inoue, D. J. Im, D.-P. Kim, J.-i. Yoshida, J. Sci. 2016, 352, 691–694;
- 17dA. Nagaki, K. Imai, S. Ishiuchi, J. i. Yoshida, Angew. Chem. Int. Ed. 2015, 54, 1914–1918.
- 18M. Kandasamy, B. Ganesan, M. Y. Hung, W. Y. Lin, Eur. J. Org. Chem. 2019, 2019, 3183–3189.
- 19P. Gandeepan, K. Parthasarathy, T. H. Su, C. H. Cheng, ACS Catal. 2012, 354, 457–468.
- 20S. Karabiyikoglu, Y. Kelgokmen, M. Zora, Tetrahedron 2015, 71, 4324–4333.
- 21N. K. Nayyar, D. R. Hutchison, M. J. Martinelli, J. Org. Chem. 1997, 62, 982–991.
- 22M. G. Civit, X. Sanz, C. M. Vogels, C. Bo, S. A. Westcott, E. Fernandez, ACS Catal. 2015, 357, 3098–3103.
- 23L.-L. Wu, Y.-C. Ge, T. He, L. Zhang, X.-L. Fu, H.-Y. Fu, H. Chen, R.-X. Li, Synthesis 2012, 44, 1577–1583.
- 24P. Liu, Q.-Q. Xu, C. Dong, X. Lei, G.-q. Lin, Synlett 2012, 23, 2087–2092.
- 25V. Lellek, C.-y. Chen, W. Yang, J. Liu, X. Ji, R. Faessler, Synlett 2018, 29, 1071–1075.
- 26P. Di Fruscia, A. Carbone, G. Bottegoni, F. Berti, F. Giacomina, S. Ponzano, C. Pagliuca, A. Fiasella, D. Pizzirani, J. A. Ortega, J. Med. Chem. 2021, 64, 13327–13355.
- 27C. Wiles, P. Watts, S. J. Haswell, E. Pombo-Villar, Org. Process Res. Dev. 2004, 8, 28–32.
- 28D. Sarkar, S. R. Sahoo, Eur. J. Org. Chem. 2019, 2019, 2035–2049.
- 29A. A. Sysoeva, A. S. Novikov, M. V. Il'in, V. V. Suslonov, D. S. Bolotin, Org. Biomol. Chem. 2021, 19, 7611–7620.
- 30J. Zhang, R.-P. Jia, D.-H. Wang, Tetrahedron Lett. 2016, 57, 3604–3607.
- 31X.-W. Fan, T. Lei, C. Zhou, Q.-Y. Meng, B. Chen, C.-H. Tung, L.-Z. Wu, J. Org. Chem. 2016, 81, 7127–7133.
- 32J. Qian, Y. Liu, J. Zhu, B. Jiang, Z. Xu, Org. Lett. 2011, 13, 4220–4223.
- 33Y.-C. Chen, M.-K. Zhu, T.-P. Loh, Org. Lett. 2015, 17, 2712–2715.
- 34N. Panda, A. K. Jena, J. Org. Chem. 2012, 77, 9401–9406.
- 35K. K. Y. Kung, V. K. Y. Lo, H. M. Ko, G. L. Li, P. Y. Chan, K. C. Leung, Z. Zhou, M. Z. Wang, C. M. Che, M. K. Wong, ACS Catal. 2013, 355, 2055–2070.
- 36P. Kumar, M. Kapur, Org. Lett. 2019, 21, 2134–2138.
- 37J. Cheng, Z. Yang, Y. Li, Y. Xi, Q. Sun, L. He, Synth. 2018, 50, 2385–2393.
- 38A. Abdukader, Y. Sun, Z. Zhang, C. Liu, Catal. Commun. 2018, 105, 43–47.
- 39Y. Zhang, Z. Long, L. Yan, L. Liu, L. Yang, Y. Le, RSC Adv. 2022, 12, 25633–25638.
- 40R. Harigae, K. Moriyama, H. Togo, J. Org. Chem. 2014, 79, 2049–2058.
- 41H.-L. Xiao, C.-C. Zeng, H.-Y. Tian, L.-M. Hu, R. D. Little, J. Electroanal. Chem. 2014, 727, 120–124.
- 42H. Yuan, M. Wang, Z. Xu, H. Gao, ACS Catal. 2019, 361, 4386–4392.
- 43T. Bandiera, P. Grünanger, F. M. Albini, J. Heterocycl. Chem. 1992, 29, 1423–1428.
- 44Y. Sun, A. Abdukader, H. Zhang, W. Yang, C. Liu, RSC Adv. 2017, 7, 55786–55789.
- 45R. Khalifeh, F. Shahriarpour, H. Sharghi, M. Aberi, J. Iran. Chem. Soc. 2018, 15, 813–821.
- 46P. Kumar, M. Kapur, Chem. Comm. 2022, 58, 4476–4479.
- 47N. Iranpoor, H. Firouzabadi, E. Etemadi-Davan, Tetrahedron Lett. 2016, 57, 837–840.