Pd-Catalyzed Oxidative C−H Arylation of (Poly)fluoroarenes with Aryl Pinacol Boronates and Experimental and Theoretical Studies of its Reaction Mechanism
Corresponding Author
Yudha P. Budiman
Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363 Sumedang, Indonesia
Search for more papers by this authorMiftahussurur Hamidi Putra
Institute of Theoretical Chemistry, Ulm University, 89081 Ulm, Germany
Search for more papers by this authorMuhammad R. Ramadhan
Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363 Sumedang, Indonesia
Search for more papers by this authorRaiza Hannifah
Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363 Sumedang, Indonesia
Search for more papers by this authorChristian Luz
Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
Search for more papers by this authorIlham Z. Ghafara
Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363 Sumedang, Indonesia
Search for more papers by this authorRustaman Rustaman
Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363 Sumedang, Indonesia
Search for more papers by this authorEngela E. Ernawati
Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363 Sumedang, Indonesia
Search for more papers by this authorTri Mayanti
Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363 Sumedang, Indonesia
Search for more papers by this authorAxel Groß
Institute of Theoretical Chemistry, Ulm University, 89081 Ulm, Germany
Helmholtz Institute Ulm (HIU), Electrochemical Energy Storage, 89069 Ulm, Germany
Search for more papers by this authorUdo Radius
Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
Search for more papers by this authorTodd B. Marder
Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
Search for more papers by this authorCorresponding Author
Yudha P. Budiman
Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363 Sumedang, Indonesia
Search for more papers by this authorMiftahussurur Hamidi Putra
Institute of Theoretical Chemistry, Ulm University, 89081 Ulm, Germany
Search for more papers by this authorMuhammad R. Ramadhan
Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363 Sumedang, Indonesia
Search for more papers by this authorRaiza Hannifah
Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363 Sumedang, Indonesia
Search for more papers by this authorChristian Luz
Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
Search for more papers by this authorIlham Z. Ghafara
Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363 Sumedang, Indonesia
Search for more papers by this authorRustaman Rustaman
Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363 Sumedang, Indonesia
Search for more papers by this authorEngela E. Ernawati
Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363 Sumedang, Indonesia
Search for more papers by this authorTri Mayanti
Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363 Sumedang, Indonesia
Search for more papers by this authorAxel Groß
Institute of Theoretical Chemistry, Ulm University, 89081 Ulm, Germany
Helmholtz Institute Ulm (HIU), Electrochemical Energy Storage, 89069 Ulm, Germany
Search for more papers by this authorUdo Radius
Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
Search for more papers by this authorTodd B. Marder
Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
Search for more papers by this authorAbstract
We report the synergistic combination of Pd(OAc)2 and Ag2O for the oxidative C−H arylation of (poly)fluoroarenes with aryl pinacol boronates (Ar-Bpin) in DMF as the solvent. This procedure can be conducted easily in air, and without using additional ligands, to afford the fluorinated unsymmetrical biaryl products in up to 98 % yield. Experimental studies suggest that the formation of [PdL2(C6F5)2] in DMF as coordinating solvent does not take place under the reaction conditions as it is stable to reductive elimination and thus would deactivate the catalyst. Thus, the intermediate [Pd(DMF)2(ArF)(Ar)] must be formed selectively to give desired arylation products. DFT calculations predict a low barrier (5.87 kcal/mol) for the concerted metalation deprotonation (CMD) process between C6F5H and the Pd(II) species formed after transmetalation between the Pd(II)X2 complex and aryl-Bpin which forms a Pd-Arrich species. Thus a Pd(Arrich)(Arpoor) complex is generated selectively which undergoes reductive elimination to generate the unsymmetrical biaryl product.
Conflict of interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
asia202400094-sup-0001-misc_information.pdf4.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aV. A. Montes, G. Li, R. Pohl, J. Shinar, Adv. Mater. 2004, 16, 2001–2003;
- 1bT. Tsuzuki, N. Shirasawa, T. Suzuki, S. Tokito, Adv. Mater. 2003, 15, 1455–1458;
- 1cM. S. Jang, S. Y. Song, H. K. Shim, Polymer 2000, 41, 5675–5679;
- 1dR. Ragni, A. Punzi, F. Babudri, G. M. Farinola, Eur. J. Org. Chem. 2018, 3500–3519;
- 1eF. Babudri, G. M. Farinola, F. Naso, R. Ragni, Chem. Commun. 2007, 1003–102.
- 2
- 2aP. Jeschke, Pest Manage. Sci. 2010, 66, 10–27;
- 2bT. Fujiwara, D. O'Hagan, J. Fluorine Chem. 2014, 167, 16–29;
- 2cY. Ogawa, E. Tokunaga, O. Kobayashi, K. Hirai, N. Shibata, iScience 2020, 23, 101467;
- 2dP. Jeschke, ChemBioChem 2004, 5, 570–589.
- 3
- 3aJ. Wang, M. S. Rosello, J. L. Aceña, C. Pozo, A. E. Sorochinsky, S. Fustero, V. A. Soloshonok, H. Liu, Chem. Rev. 2014, 114, 2432–2506;
- 3bH.-J. Böhm, D. Banner, S. Bendels, M. Kansy, B. Kuhn, K. Müller, U. Obst-Sander, M. Stahl, ChemBioChem 2004, 5, 637–643;
- 3cC. D. Isanbor, D. O'Hagan, J. Fluorine Chem. 2006, 127, 303–319;
- 3dJ.-P. Begue, D. Bonnet-Delpon, J. Fluorine Chem. 2006, 127, 992–1012;
- 3eK. L. Kirk, J. Fluorine Chem. 2006, 127, 1013–1029;
- 3fK. Müller, C. Faeh, F. Diederich, Science 2007, 317, 1881–1886;
- 3gW. K. Hagmann, J. Med. Chem. 2008, 51, 4359–4369;
- 3hD. O'Hagan, J. Fluorine Chem. 2010, 131, 1071–1081;
- 3iM. Inoue, Y. Sumii, N. Shibata, ACS Omega 2020, 5, 10633–10640.
- 4For a review on the synthesis and applications of fluorinated aryl boronates, see: Y. P. Budiman, S. A. Westcott, U. Radius, T. B. Marder, Adv. Synth. Catal. 2021, 363, 2224–2255.
- 5
- 5aJ. Zhou, M. W. Kuntze-Fechner, R. Bertermann, U. S. D. Paul, J. H. J. Berthel, A. Friedrich, Z. Du, T. B. Marder, U. Radius, J. Am. Chem. Soc. 2016, 138, 5250–5253;
- 5bY.-M. Tian, X.-N. Guo, M. W. Kuntze-Fechner, I. Krummenacher, H. Braunschweig, U. Radius, A. Steffen, T. B. Marder, J. Am. Chem. Soc. 2018, 140, 17612–17623;
- 5cY. P. Budiman, A. Friedrich, U. Radius, T. B. Marder, ChemCatChem 2019, 11, 5387–5396;
- 5dY. P. Budiman, A. Jayaraman, A. Friedrich, F. Kerner, U. Radius, T. B. Marder, J. Am. Chem. Soc. 2020, 142, 6036–6050;
- 5eZ. Liu, Y. P. Budiman, Y.-M. Tian, A. Friedrich, M. Huang, S. A. Westcott, U. Radius, T. B. Marder, Chem. Eur. J. 2020, 26, 17267–17274;
- 5fY. P. Budiman, S. Lorenzen, Z. Liu, U. Radius, T. B. Marder, Chem. Eur. J. 2021, 27, 3869–3874;
- 5gZ. Liu, G. K. Kole, Y. P. Budiman, Y.-M. Tian, A. Friedrich, X. Luo, S. A. Westcott, U. Radius, T. B. Marder, Angew. Chem. Int. Ed. 2021, 60, 16529–16538.
- 6J. Wang, G. Meng, K. XIe, L. Li, H. Sun, Z. Huang, ACS Catal. 2017, 7, 7421–7430.
- 7K. Maruoka, I. Shimada, M. Akakura, H. Yamamoto, Synlett 1994, 10, 847–848.
10.1055/s-1994-23027 Google Scholar
- 8T. D. Moseev, M. V. Varaksin, D. A. Gorlov, E. A. Nikiforov, D. S. Kopchuk, E. S. Starnovskaya, A. F. Khasanov, G. V. Zyryanov, V. N. Charushin, O. N. Chupakhin, J. Fluorine Chem. 2019, 224, 89–99.
- 9N. Sugita, S. Hayashi, S. Ishii, T. Takanami, Catalysts 2013, 3, 839–852.
- 10X. Yi, R. Mao, L. Lavrencic, X. Hu, Angew. Chem. Int. Ed. 2021, 60, 23557–23563.
- 11H. Fang, Q. He, G. Liu, Z. Huang, Org. Lett. 2020, 22, 9298–9302.
- 12A. Sapegin, M. Krasavin, Tetrahedron Lett. 2018, 59, 1948–1951.
- 13R. Shang, Y. Fu, Y. Wang, Q. Xu, H.-Z. Yu, L. Liu, Angew. Chem. Int. Ed. 2009, 48, 9350–9354.
- 14
- 14aT. Ahrens, J. Kohlmann, M. Ahrens, T. Braun, Chem. Rev. 2015, 115, 931–941;
- 14bL. Keyes, J. A. Love, Aromatic C−F Activation: Converting Fluoroarenes to Useful Building Blocks., in C−H and C−X Bond Functionalization, (Ed.: X. Ribas), Royal Society of Chemistry, Cambridge, U. K., 2013.
- 15
- 15aM. He, J.-F. Soule, H. Doucet, ChemCatChem 2014, 6, 1824–1859;
- 15bF. Chem, Q.-Q. Min, X. Zhang, J. Org. Chem. 2012, 77, 2992–2998;
- 15cA. Tlahuext-Aca, S. Y. Lee, S. Sakamoto, J. F. Hartwig, ACS Catal. 2021, 11, 1430–1434;
- 15dY. P. Budiman, R. N. Perutz, P. Steel, U. Radius, T. B. Marder, Chem. Rev. 2024, 124, DOI: 10.1021/acs.chemrev.3c00793.
- 16
- 16aO. Eisenstein, J. Milani, R. N. Perutz, Chem. Rev. 2017, 117, 8710–8753;
- 16bR. Clot, O. Eisenstein, N. Jasim, S. A. Macgregor, J. E. McGrady, R. N. Perutz, Acc. Chem. Res. 2011, 44, 333–348;
- 16cS. I. Gorelsky, Coord. Chem. Rev. 2013, 257, 153–164.
- 17T. P. Pabst, J. V. Obligacion, E. Rochette, I. Pappas, P. J. Chirik, J. Am. Chem. Soc. 2019, 141, 15378–15389.
- 18
- 18aD. Whitaker, J. Burés, I. Larrosa, J. Am. Chem. Soc. 2016, 138, 8384–8387;
- 18bG. Atvahan, T. F. N. Tanner, A. C. Whitwood, I. J. S. Fairlamb, R. N. Perutz, Organometallics 2022, 41, 3175–3184;
- 18cG. M. H. Platt, P. M. Aguiar, G. Athavan, J. T. W. Bray, N. W. J. Scott, I. J. S. Fairlamb, R. N. Perutz, Organometallics 2023, 42, 2378–2394.
- 19Z. Guo, J. Luu, V. Blair, G. B. Deacon, P. C. Junk, Eur. J. Inorg. Chem. 2019, 1018–1029.
- 20
- 20aM. Lafrance, C. N. Rowley, T. K. Woo, K. Fagnou, J. Am. Chem. Soc. 2006, 128, 8754–8756;
- 20bM. Lafrance, D. Shore, K. Fagnou, Org. Lett. 2006, 8, 5097–5100;
- 20cY. Shen, X.-X. Wu, S. Chen, Y. Xia, Y.-M. Liang, Chem. Commun. 2018, 54, 2256–2259;
- 20dH.-Q. Do, O. Daugulis, J. Am. Chem. Soc. 2008, 130, 1128–1129;
- 20eJ. Ponce-de-Leon, G. Marcos-Ayuso, J. A. Casares, P. Espinet, Chem. Commun. 2022, 58, 3146–3149;
- 20fM. Simonetti, G. J. P. Perry, X. C. Camberio, F. Julia-Hernandez, J. N. Arokianathar, I. Larrosa, J. Am. Chem. Soc. 2016, 138, 3596–3606;
- 20gZ. Fu, Q. Xiong, W. Zhang, Z. Li, H. Cai, Tetrahedron Lett. 2015, 56, 123–126;
- 20hT. D. Moseev, M. V. Varaksin, D. A. Gorlov, V. N. Charushin, O. N. Chupakhin, Org. Biomol. Chem. 2021, 19, 4429–4459;
- 20iO. Y. Yuen, M. P. Leung, C. M. So, R. W.-Y. Sun, F. Y. Kwong, J. Org. Chem. 2018, 83, 9008–9017;
- 20jF. Abdellaoui, H. B. Ammar, J.-F. Soulé, H. Doucet, Catal. Commun. 2015, 71, 13–16;
- 20kO. Y. Yuen, M. Charoensak, C. M. So, C. Kuhakarn, F. Y. Kwong, Chem. Asian J. 2015, 10, 857–861;
- 20lJ. W. W. Chang, E. Y. Chia, C. L. L. Chai, J. Seayad, Org. Biomol. Chem. 2012, 10, 2289–2299;
- 20mD. S. Lee, P. Y. Choy, C. M. So, J. Wang, C. P. Lau, F. Y. Kwong, RSC Adv. 2012, 2, 9179–9182;
- 20nS. Fan, J. Han, X. Zhang, Org. Lett. 2011, 13, 4374–4377;
- 20oS. Otsuka, H. Yorimitsu, A. Osuka, Chem. Eur. J. 2015, 21, 14703–14707.
- 21
- 21aI. Ban, T. Sudo, T. Taniguchi, K. Itami, Org. Lett. 2008, 10, 3607–3609;
- 21bY. Wei, J. Kan, M. Wang, W. Su, M. Hong, Org. Lett. 2009, 11, 3346–3349;
- 21cH. Li, J. Liu, C.-L. Sun, B.-J. Li, Z.-J. Shi, Org. Lett. 2011, 13, 276–27;
- 21dX. Fang, Y. Huang, X. Chen, X. Lin, Z. Bai, K.-W. Huang, Y. Yuang, Z. Weng, J. Fluorine Chem. 2013. 151, 50–57;
- 21eA. Dahiya, C. Fricke, F. Schoenebeck, J. Am. Chem. Soc. 2020, 142, 7754–7759;
- 21fH. Fan, Y. Shang, W. Su, Eur. J. Org. Chem. 2014, 3323–3327;
- 21gT. Miao, L. Wang, Adv. Synth. Catal. 2014, 356, 429–436.
- 22R. Díaz-Torres, S. Alvarez, Dalton Trans. 2011, 40, 10742–10750.
- 23T. D. Quach, R. A. Batey, Org. Lett. 2003, 5, 4397–4400.
- 24C. C. Tzschucke, J. M. Murphy, J. F. Hartwig, Org. Lett. 2007, 9, 761–764.
- 25M. S. Gong, H. S. Lee, Y. M. Jeon, J. Mater. Chem. 2010, 20, 10735–10746.
- 26
- 26aT. Korenaga, T. Kosaki, R. Fukumura, T. Ema, T. Sakai, Org. Lett. 2005, 7, 4915–4917;
- 26bY. Nishihara, H. Onodera, K. Osakada, Chem. Commun. 2004, 192–193;
- 26cJ. Uenishi, J. M. Beau, R. W. Armstrong, Y. Kishi, J. Am. Chem. Soc. 1987, 109, 4756–4758.
- 27V. Farina, B. Krishnan, J. Am. Chem. Soc. 1991, 113, 9585–9595.
- 28J. Louie, J. F. Hartwig, J. Am. Chem. Soc. 1995, 117, 11598–11599.
- 29C. Amatore, A. A. Bahsoun, A. Jutand, G. Meyer, A. N. Ntepe, L. Ricard, J. Am. Chem. Soc. 2003, 125, 4212–4222.
- 30M. Perez-Rodríguez, A. A. C. Braga, M. Garcia-Melchor, M. H. Perez-Temprano, J. A. Casares, G. Ujaque, A. R. de Lera, R. Alvarez, F. Maseras, P. Espinet, J. Am. Chem. Soc. 2009, 131, 3650–3657.
- 31E. Gioria, J. del Pozo, J. M. Martínez-Ilarduya, P. Espinet, Angew. Chem. Int. Ed. 2016, 55, 13276–13280.
- 32This is in line studies by Su et al. (see: ref 21b) who reported Pd(OAc)2/Ag2CO3 mediated C−H arylation of polyfluoroarenes, with aryl-B(OH)2 in the presence of external acids and bases. Their preliminary mechanistic studies suggested that Ar−B(OH)2 transmetallation precedes ArF-H activation, but the alternative order could not be ruled out.
- 33J. F. Hartwig, Inorg. Chem. 2007, 46, 1936–1947.