Single-Atom Based Metal-Organic Frameworks for Efficient C−S Cross-Coupling
Gobbilla Sai Kumar
Hybrid Porous Materials Laboratory, Department of Chemistry, Indian Institute of Technology Jammu, Jammu & Kashmir, 181221 India
Equally contributed to this work
Contribution: Data curation (supporting), Formal analysis (supporting)
Search for more papers by this authorDeepak Kumar
Hybrid Porous Materials Laboratory, Department of Chemistry, Indian Institute of Technology Jammu, Jammu & Kashmir, 181221 India
Equally contributed to this work
Contribution: Conceptualization (supporting), Data curation (supporting)
Search for more papers by this authorAditya Thakur
Hybrid Porous Materials Laboratory, Department of Chemistry, Indian Institute of Technology Jammu, Jammu & Kashmir, 181221 India
Contribution: Formal analysis (supporting)
Search for more papers by this authorMukul Gupta
UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore, 452 001 India
Contribution: Data curation (equal), Investigation (equal)
Search for more papers by this authorPraveen Kumar Velpula
UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore, 452 001 India
Contribution: Investigation (supporting)
Search for more papers by this authorRabindranath Lo
Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, v.v.i., Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
Contribution: Investigation (equal), Methodology (equal), Supervision (equal)
Search for more papers by this authorCorresponding Author
Kolleboyina Jayaramulu
Hybrid Porous Materials Laboratory, Department of Chemistry, Indian Institute of Technology Jammu, Jammu & Kashmir, 181221 India
Contribution: Conceptualization (lead), Investigation (lead), Writing - original draft (lead), Writing - review & editing (lead)
Search for more papers by this authorGobbilla Sai Kumar
Hybrid Porous Materials Laboratory, Department of Chemistry, Indian Institute of Technology Jammu, Jammu & Kashmir, 181221 India
Equally contributed to this work
Contribution: Data curation (supporting), Formal analysis (supporting)
Search for more papers by this authorDeepak Kumar
Hybrid Porous Materials Laboratory, Department of Chemistry, Indian Institute of Technology Jammu, Jammu & Kashmir, 181221 India
Equally contributed to this work
Contribution: Conceptualization (supporting), Data curation (supporting)
Search for more papers by this authorAditya Thakur
Hybrid Porous Materials Laboratory, Department of Chemistry, Indian Institute of Technology Jammu, Jammu & Kashmir, 181221 India
Contribution: Formal analysis (supporting)
Search for more papers by this authorMukul Gupta
UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore, 452 001 India
Contribution: Data curation (equal), Investigation (equal)
Search for more papers by this authorPraveen Kumar Velpula
UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore, 452 001 India
Contribution: Investigation (supporting)
Search for more papers by this authorRabindranath Lo
Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, v.v.i., Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
Contribution: Investigation (equal), Methodology (equal), Supervision (equal)
Search for more papers by this authorCorresponding Author
Kolleboyina Jayaramulu
Hybrid Porous Materials Laboratory, Department of Chemistry, Indian Institute of Technology Jammu, Jammu & Kashmir, 181221 India
Contribution: Conceptualization (lead), Investigation (lead), Writing - original draft (lead), Writing - review & editing (lead)
Search for more papers by this authorAbstract
Single-atom-based Metal-Organic Frameworks (MOFs) hold great promising candidates for heterogeneous catalysis, demonstrating outstanding catalytic activity and exceptional product selectivity. This is attributed to their optimal atom utilization, high surface energy, and the presence of unsaturated coordination environments. Here in, we have developed a nickel single-atom catalyst (SAC) featuring Ni single atoms covalently attached to defect-engineered Zr-oxide clusters within the stable UiO-66 (Universitetet i Oslo) framework, synthesized via a straightforward solution impregnation method (denoted as UiO-66/Ni now onwards). The resulting UiO-66/Ni catalyst, with a uniform distribution of nickel single atoms, exhibits remarkable stability and demonstrates exceptional performance in C−S coupling reactions of various aryl thiols and aryl halides, yielding desired products with outstanding catalytic activity and selectivity, regardless of electron-donating or withdrawing substituents at room temperature and maintains robust stability even after six cycles. Advanced density functional theory calculations have been exploited to clarify the mechanism of C−S cross-coupling for examining the influence of substituents on the aromatic ring of aryl thiols through free energy profiles. The collaborative action of nickel single atoms and the defects of UiO-66 during the oxidative addition and reductive elimination steps facilitated the formation of energetically favorable C−S cross-coupling products. This study offers valuable insights for the development of enhanced single atom-based hybrid catalytic systems for heterogeneous coupling reactions.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
asia202401578-sup-0001-misc_information.pdf3.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. Wang, P. He, J. Wu, N. Chen, C. Pan, E. Shi, H. Jia, T. Hu, K. He, Q. Cai, R. Shen, Energy Fuels 2023, 37, 17075–17093.
- 2Y. Xu, M. Cao, Q. Zhang, Mater. Chem. Front. 2021, 5, 151–222.
- 3K.-i. Shimizu, Catal. Sci. Technol. 2015, 5, 1412–1427.
- 4C. M. Friend, B. Xu, Acc. Chem. Res. 2017, 50, 517–521.
- 5I. P. Beletskaya, V. P. Ananikov, Chem. Rev. 2022, 122, 16110–16293.
- 6C.-F. Lee, Y.-C. Liu, S. S. Badsara, Chem. Asian J. 2014, 9, 706–722.
- 7G. De Martino, M. C. Edler, G. La Regina, A. Coluccia, M. C. Barbera, D. Barrow, R. I. Nicholson, G. Chiosis, A. Brancale, E. Hamel, M. Artico, R. Silvestri, J. Med. Chem. 2006, 49, 947–954.
- 8X. Li, Y. Zhu, J. Shao, B. Wang, S. Zhang, Y. Shao, X. Jin, X. Yao, R. Fang, X. Shao, Angew. Chem. Int. Ed. 2014, 53, 535–538.
- 9S. Zhang, X. Qiao, Y. Chen, Y. Wang, R. M. Edkins, Z. Liu, H. Li, Q. Fang, Org. Lett. 2014, 16, 342–345.
- 10E. Marcantoni, M. Massaccesi, M. Petrini, G. Bartoli, M. C. Bellucci, M. Bosco, L. Sambri, J. Org. Chem. 2000, 65, 4553–4559.
- 11K. S. Egorova, V. P. Ananikov, Angew. Chem. Int. Ed. 2016, 55, 12150–12162.
- 12A. Bavykina, N. Kolobov, I. S. Khan, J. A. Bau, A. Ramirez, J. Gascon, Chem. Rev. 2020, 120, 8468–8535.
- 13P. Samanta, J. Canivet, ChemCatChem 2024, 16, e202301435.
- 14A. E. Baumann, D. A. Burns, B. Liu, V. S. Thoi, Commun. Chem. 2019, 2, 86.
- 15K. Jayaramulu, J. Masa, D. M. Morales, O. Tomanec, V. Ranc, M. Petr, P. Wilde, Y.-T. Chen, R. Zboril, W. Schuhmann, R. A. Fischer, Adv. Sci. 2018, 5, 1801029.
10.1002/advs.201801029 Google Scholar
- 16S. Liu, Z. Teng, H. Liu, T. Wang, G. Wang, Q. Xu, X. Zhang, M. Jiang, C. Wang, W. Huang, H. Pang, Angew. Chem. Int. Ed. 2022, 61, e202207026.
- 17L. Su, H. Wu, S. Zhang, C. Cui, S. Zhou, H. Pang, Adv. Mater. 2024, 2414628. <?
10.1002/adma.202414628 Google Scholar
- 18Z. Qiu, Y. Li, Y. Gao, Z. Meng, Y. Sun, Y. Bai, N.-T. Suen, H.-C. Chen, Y. Pi, H. Pang, Angew. Chem. Int. Ed. 2023, 62, e202306881.
- 19Y. Shi, B. Yang, G. Song, Z. Chen, M. Shakouri, W. Zhou, X. Zhang, G. Yuan, H. Pang, Angew. Chem. Int. Ed. 2024, 63, e202411579.
- 20A. Wang, J. Li, T. Zhang, Nat. Chem. Rev. 2018, 2, 65–81.
- 21J. Guo, H. Liu, D. Li, J. Wang, X. Djitcheu, D. He, Q. Zhang, RSC Adv. 2022, 12, 9373–9394.
- 22X.-F. Yang, A. Wang, B. Qiao, J. Li, J. Liu, T. Zhang, Acc. Chem. Res. 2013, 46, 1740–1748.
- 23Z.-Y. Wu, P. Zhu, D. A. Cullen, Y. Hu, Q.-Q. Yan, S.-C. Shen, F.-Y. Chen, H. Yu, M. Shakouri, J. D. Arregui-Mena, A. Ziabari, A. R. Paterson, H.-W. Liang, H. Wang, Nat. Syst. 2022, 1, 658–667.
- 24S. Wang, L. Wang, D. Wang, Y. Li, Energy Environ. Sci. 2023, 16, 2759–2803.
- 25Y.-S. Wei, M. Zhang, R. Zou, Q. Xu, Chem. Rev. 2020, 120, 12089–12174.
- 26H. Huang, K. Shen, F. Chen, Y. Li, ACS Catal. 2020, 10, 6579–6586.
- 27P. Xia, C. Wang, Q. He, Z. Ye, I. Sirés, Chem. Eng. J. 2023, 452, 139446.
- 28S. Ma, W. Han, W. Han, F. Dong, Z. Tang, J. Mater. Chem. A 2023, 11, 3315–3363.
- 29H. Liu, M. Cheng, Y. Liu, J. Wang, G. Zhang, L. Li, L. Du, G. Wang, S. Yang, X. Wang, Energy Environ. Sci. 2022, 15, 3722–3749.
- 30L. Jiao, H.-L. Jiang, Chem 2019, 5, 786–804.
- 31A. D. Nishchakova, L. G. Bulusheva, D. A. Bulushev, Catal. 2023, 13, 845.
- 32S. Swain, A. Altaee, M. Saxena, A. K. Samal, Coord. Chem. Rev. 2022, 470, 214710.
- 33S. Yuan, Y.-P. Chen, J. Qin, W. Lu, X. Wang, Q. Zhang, M. Bosch, T.-F. Liu, X. Lian, H.-C. Zhou, Angew. Chem. Int. Ed. 2015, 54, 14696–14700.
- 34Z. Li, N. M. Schweitzer, A. B. League, V. Bernales, A. W. Peters, A. B. Getsoian, T. C. Wang, J. T. Miller, A. Vjunov, J. L. Fulton, J. A. Lercher, C. J. Cramer, L. Gagliardi, J. T. Hupp, O. K. Farha, J. Am. Chem. Soc. 2016, 138, 1977–1982.
- 35J. Zheng, L. Löbbert, S. Chheda, N. Khetrapal, J. Schmid, C. A. Gaggioli, B. Yeh, R. Bermejo-Deval, R. K. Motkuri, M. Balasubramanian, J. L. Fulton, O. Y. Gutiérrez, J. I. Siepmann, M. Neurock, L. Gagliardi, J. A. Lercher, J. Catal. 2022, 413, 176–183.
- 36H. Alinezhad, S. Ghasemi, M. Cheraghian, J. Organomet. Chem. 2019, 898, 120867.
- 37S. Rasaily, D. Sharma, S. Pradhan, N. Diyali, S. Chettri, B. Gurung, S. Tamang, A. Pariyar, Inorg. Chem. 2022, 61, 13685–13699.
- 38J. Winarta, B. Shan, S. M. McIntyre, L. Ye, C. Wang, J. Liu, B. Mu, Cryst. Growth Des. 2020, 20, 1347–1362.
- 39J. H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K. P. Lillerud, J. Am. Chem. Soc. 2008, 130, 13850–13851.
- 40K. Chattopadhyay, M. Mandal, D. K. Maiti, Mater Adv 2024, 5, 51–67.
- 41X. Feng, H. S. Jena, C. Krishnaraj, K. Leus, G. Wang, H. Chen, C. Jia, P. Van Der Voort, ACS Appl. Mater. Interfaces 2021, 13, 60715–60735.
- 42D. Bůžek, J. Demel, K. Lang, Inorg. Chem. 2018, 57, 14290–14297.
- 43F. Ahmadijokani, R. Mohammadkhani, S. Ahmadipouya, A. Shokrgozar, M. Rezakazemi, H. Molavi, T. M. Aminabhavi, M. Arjmand, Chem. Eng. J. 2020, 399, 125346.
- 44A. Sławek, G. Jajko, K. Ogorzały, D. Dubbeldam, T. J. H. Vlugt, W. Makowski, Chem. Eur. J. 2022, 28, e202200030.
- 45S. Dissegna, K. Epp, W. R. Heinz, G. Kieslich, R. A. Fischer, Adv. Mater. 2018, 30, 1704501.
- 46D. S. Sholl, R. P. Lively, J. Phys. Chem. Lett. 2015, 6, 3437–3444.
- 47Y. Shan, G. Zhang, Y. Shi, H. Pang, Cell Rep. Phys. Sci. 2023, 4, 101301.
- 48K. Jayaramulu, M. Horn, A. Schneemann, H. Saini, A. Bakandritsos, V. Ranc, M. Petr, V. Stavila, C. Narayana, B. Scheibe, Š. Kment, M. Otyepka, N. Motta, D. Dubal, R. Zbořil, R. A. Fischer, Adv. Mater. 2021, 33, 2004560.
- 49T. Yang, V. Petricek, W. Wan, Z. Wei, J. Sun, Dalton Trans. 2012, 41, 2884–2889.
- 50G. Greczynski, L. Hultman, Prog. Mater. Sci. 2020, 107, 100591.
- 51Y. Yi, P. Zhang, Z. Qin, C. Yu, W. Li, Q. Qin, B. Li, M. Fan, X. Liang, L. Dong, RSC Adv. 2018, 8, 7110–7122.
- 52A. M. Abdel-Mageed, B. Rungtaweevoranit, M. Parlinska-Wojtan, X. Pei, O. M. Yaghi, R. J. Behm, J. Am. Chem. Soc. 2019, 141, 5201–5210.
- 53S. Rasaily, D. Sharma, S. Pradhan, N. Diyali, S. Chettri, B. Gurung, S. Tamang, A. Pariyar, Inorg. Chem. 2022, 61, 13685–13699.
- 54S. Iraqui, M. H. Rashid, New J. Chem. 2022, 46, 22766–22777.
- 55D. Sengupta, B. Basu, Org. Med. Chem. Lett. 2014, 4, 17.
- 56R. Lakshmi Priya, S. Ganesh Babu, J. Phys. Chem. Solids 2024, 184, 111711.
- 57S.-Q. Yu, N. Liu, M.-G. Liu, L. Wang, J. Chem. Res. 2020, 45, 237–241.
10.1177/1747519820966985 Google Scholar
- 58E. Rufino-Felipe, H. Valdés, D. Morales-Morales, Eur. J. Org. Chem. 2022, 2022, e202200654.