Supramolecular J- and H-Aggregation of Naphthalimide-Conjugated Dipeptide in Mixed-Solvent Systems and its Application in Cell Imaging
This article relates to:
-
Cover Feature: Supramolecular J- and H-Aggregation of Naphthalimide-Conjugated Dipeptide in Mixed-Solvent Systems and its Application in Cell Imaging (Chem. Asian J. 22/2024)
- Soumen Kuila,
- Kolimi Prashanth Reddy,
- Shalini Dasgupta,
- Abhijit Bera,
- Moupriya Mukherjee,
- Goutam Pramanik,
- Pallab Datta,
- Jayanta Nanda,
- Volume 19Issue 22Chemistry – An Asian Journal
- First Published online: November 21, 2024
Soumen Kuila
Department of Chemistry, University of North Bengal, Raja Rammohanpur, Siliguri, West Bengal, PIN-734013 India
Search for more papers by this authorKolimi Prashanth Reddy
Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Kolkata (NIPER-K), Chunilal Bhawan, 168, Maniktala Main Road, Kolkata, West Bengal, PIN-700054 India
Search for more papers by this authorShalini Dasgupta
Centre for Healthcare Science and Technology, Indian Institution of Engineering Science and Technology, Shibpur, P.O. – Botanic Garden, Howrah, India
Search for more papers by this authorAbhijit Bera
Department of Physics, Midnapore College (Autonomus), Raja Bazar Main Road, Midnapore, West Bengal, PIN-721101 India
Search for more papers by this authorMoupriya Mukherjee
UGC-DAE Consortium For Scientific Research, Kolkata Centre, Sector III, LB-8, Bidhan Nagar, Kolkata, PIN-700 106 West Bengal, India
Search for more papers by this authorGoutam Pramanik
UGC-DAE Consortium For Scientific Research, Kolkata Centre, Sector III, LB-8, Bidhan Nagar, Kolkata, PIN-700 106 West Bengal, India
Search for more papers by this authorPallab Datta
Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Kolkata (NIPER-K), Chunilal Bhawan, 168, Maniktala Main Road, Kolkata, West Bengal, PIN-700054 India
Search for more papers by this authorCorresponding Author
Jayanta Nanda
Department of Chemistry, University of North Bengal, Raja Rammohanpur, Siliguri, West Bengal, PIN-734013 India
Search for more papers by this authorSoumen Kuila
Department of Chemistry, University of North Bengal, Raja Rammohanpur, Siliguri, West Bengal, PIN-734013 India
Search for more papers by this authorKolimi Prashanth Reddy
Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Kolkata (NIPER-K), Chunilal Bhawan, 168, Maniktala Main Road, Kolkata, West Bengal, PIN-700054 India
Search for more papers by this authorShalini Dasgupta
Centre for Healthcare Science and Technology, Indian Institution of Engineering Science and Technology, Shibpur, P.O. – Botanic Garden, Howrah, India
Search for more papers by this authorAbhijit Bera
Department of Physics, Midnapore College (Autonomus), Raja Bazar Main Road, Midnapore, West Bengal, PIN-721101 India
Search for more papers by this authorMoupriya Mukherjee
UGC-DAE Consortium For Scientific Research, Kolkata Centre, Sector III, LB-8, Bidhan Nagar, Kolkata, PIN-700 106 West Bengal, India
Search for more papers by this authorGoutam Pramanik
UGC-DAE Consortium For Scientific Research, Kolkata Centre, Sector III, LB-8, Bidhan Nagar, Kolkata, PIN-700 106 West Bengal, India
Search for more papers by this authorPallab Datta
Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Kolkata (NIPER-K), Chunilal Bhawan, 168, Maniktala Main Road, Kolkata, West Bengal, PIN-700054 India
Search for more papers by this authorCorresponding Author
Jayanta Nanda
Department of Chemistry, University of North Bengal, Raja Rammohanpur, Siliguri, West Bengal, PIN-734013 India
Search for more papers by this authorAbstract
In this work, a core-substituted NMI-conjugated dipeptide (4MNLV) was extensively studied in mixed solvent systems to explore the polarity effect on the self-assembly pattern and their photophysical property. 4MNLV adopted J- or H- type aggregation pattern depending upon the polarity index of the solvent system chosen. The self-assembly process was achieved through the anti-solvent effect. UV-vis study suggested that if the stock solution of 4MNLV was diluted with a relatively more polar solvent (compared to the stock solvent), then the system acquired J- type of aggregation pattern by showing a red-shift in their absorption maxima (λmax). Conversely, when the stock was diluted by a relatively less polar solvent, H-type of aggregation was observed, where blue shift of λmax was noticed. The emission spectra and the lifetime of the self-assembled materials were also influenced by the chosen solvent system. The chirotopic behaviour of these self-assembled materials was studied through CD spectroscopy. Morphological study indicated the formation of helical nanofibrillar structures. The bright green fluorescence of these highly biocompatible naphthalimide-peptide conjugate was used for cell imaging application, indicating its futuristic scope.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Data of the experiments will be found at supporting information section.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
asia202400755-sup-0001-misc_information.pdf1.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aS. R. Diegelmann, J. M. Gorham, J. D. Tovar, J. Am. Chem. Soc. 2008, 130, 13840–13841;
- 1bJ. D. Tovar, Acc. Chem. Res. 2013, 46, 1527–1537;
- 1cH. Shao, J. Seifert, N. C. Romano, M. Gao, J. J. Helmus, C. P. Jaroniec, D. A. Modarelli, J. R. Parquette, Angew. Chem. Int. Ed. 2010, 49, 7688–7691;
- 1dA. Insuasty, S. Carrara, J. Xuechen, C. R. McNeill, C. Hogan, S. J. Langford, Chem. Asian J. 2024, 19, e202400152;
- 1eG. Ghosh, K. K. Kartha, G. Fernández, Chem. Commun. 2021, 57, 1603–1606;
- 1fI. W. Hamley, ACS Appl. Bio Mater. 2023, 6, 384–409;
- 1gJ. Nanda, A. Biswas, A. Banerjee, Soft Matter 2013, 9, 4198–4208;
- 1hM. Ma, Y. Kuang, Y. Gao, Y. Zhang, P. Gao, B. Xu, J. Am. Chem. Soc. 2010, 132, 2719–2728;
- 1iM. Coste, E. Suárez-Picado, S. Ulrich, Chem. Sci. 2022, 13, 909–933;
- 1jC. Madhu, B. Roy, P. Makam, T. Govindaraju, Chem. Commun. 2018, 54, 2280–2283;
- 1kM. Konda, S. Maiti, R. G. Jadhav, A. K. Das, Chem. Asian J. 2018, 13, 204–209.
- 2
- 2aD. Ivnitski, M. Amit, O. Silberbush, Y. Atsmon-Raz, J. Nanda, R. Cohen-Luria, Y. Miller, G. Ashkenasy, N. Ashkenasy, Angew. Chem. Int. Ed. 2016, 55, 9988–9992;
- 2bH. A. M. Ardoña, J. D. Tovar, Bioconjugate Chem. 2015, 26, 2290–2302;
- 2cM. B. Avinash, K. Swathi, K. S. Narayan, T. Govindaraju, ACS Appl. Mater. Interfaces 2016, 8, 8678–8685.
- 3
- 3aF. Sheehan, D. Sementa, A. Jain, M. Kumar, M. Tayarani-Najjaran, D. Kroiss, R. V. Ulijn, Chem. Rev. 2021, 121, 13869–13914;
- 3bA. Chatterjee, S. Ghosh, C. Ghosh, D. Das, Angew. Chem. Int. Ed. 2022, 61, e202201547;
- 3cJ. Nanda, A. Biswas, B. Adhikari, A. Banerjee, Angew. Chem. Int. Ed. 2013, 52, 5041–5045;
- 3dJ. Nanda, B. Rubinov, D. Ivnitski, R. Mukherjee, E. Shtelman, Y. Motro, Y. Miller, N. Wagner, R. Cohen-Luria, G. Ashkenasy, Nat. Commun. 2017, 8, 434;
- 3eA. Chatterjee, A. Reja, S. Pal, D. Das, Chem. Soc. Rev. 2022, 51, 3047–3070;
- 3fH. Shao, J. R. Parquette, Chem. Commun. 2010, 46, 4285–4287;
- 3gM. Ji, M. L. Mason, D. A. Modarelli, J. R. Parquette, Chem. Sci. 2019, 10, 7868–7877;
- 3hJ. Chmielewski, Pept. Sci. 2021, 113, e24226;
- 3iR. de la Rica, H. Matsui, Chem. Soc. Rev. 2010, 39, 3499–3509;
- 3jS. Kuila, S. Dey, P. Singh, A. Shrivastava, J. Nanda, Chem. Commun. 2023, 59, 14509–14523;
- 3kB. J. Kim, Chem. Asian J. 2022, 17, e202200094;
- 3lR. Xing, C. Yuan, S. Li, J. Song, J. Li, X. Yan, Angew. Chem. Int. Ed. 2018, 57, 1537–1542;
- 3mD. B. Rasale, M. Konda, S. Biswas, A. K. Das, Chem. Asian J. 2016, 11, 926–935;
- 3nS. Kuila, J. Nanda, ChemSystemsChem 2024, 6, e202400022;
- 3oM. P. Hendricks, K. Sato, L. C. Palmer, S. I. Stupp, Acc. Chem. Res. 2017, 50, 2440–2448;
- 3pM. Amit, S. Yuran, E. Gazit, M. Reches, N. Ashkenasy, Adv. Mater. 2018, 30, 1707083.
- 4
- 4aZ. Du, B. Fan, Q. Dai, L. Wang, J. Guo, Z. Ye, N. Cui, J. Chen, K. Tan, R. Li, W. Tang, Giant 2022, 9, 100082;
- 4bV. A. Adhav, K. Saikrishnan, ACS Omega 2023, 8, 22268–22284;
- 4cR. Kumar, S. Das, G. M. Mohite, S. K. Rout, S. Halder, N. N. Jha, S. Ray, S. Mehra, V. Agarwal, S. K. Maji, Angew. Chem. Int. Ed. 2018, 57, 5262–5266.
- 5
- 5aK. Tao, A. Levin, L. Adler-Abramovich, E. Gazit, Chem. Soc. Rev. 2016, 45, 3935;
- 5bC. Diaferia, E. Rosa, E. Gallo, G. Morelli, A. Accardo, Chem. Eur. J. 2023, 29, e202300661;
- 5cH. Kaur, S. Roy, Biomacromolecules 2021, 22, 2393–2407;
- 5dA. D. Martin, P. Thordarson, J. Mater. Chem. B 2020, 8, 863–877;
- 5eJ. Nanda, A. Banerjee, Soft Matter 2012, 8, 3380–3386.
- 6
- 6aZ. Chen, D. Wu, X. Han, Y. Nie, J. Yin, G.-A. Yu, S. H. Liu, RSC Adv. 2014, 4, 63985–63988;
- 6bP. Gopikrishna, N. Meher, P. K. Iyer, ACS Appl. Mater. Interfaces. 2018, 10, 12081–12111;
- 6cN. Meher, P. K. Iyer, Nanoscale 2019, 11, 13233–13242;
- 6dC. Balachandra, T. Govindaraju, J. Org. Chem. 2020, 85, 1525–1536;
- 6eT. Shu, J. Wu, M. Lu, L. Chen, T. Yi, F. Li, C. Huang, J. Mater. Chem. 2008, 18, 886–893;
- 6fQ. N. Pham, N. Brosse, C. Frochot, D. Dumas, A. Hocquet, B. Jamart-Grégoire, New J. Chem. 2008, 32, 1131–1139;
- 6gH.-H. Lin, Y.-C. Chan, J.-W. Chen, C.-C. Chang, J. Mater. Chem. 2011, 21, 3170–3177;
- 6hS. Liu, F. Li, Y. Wang, X. Li, C. Zhu, Y. Cheng, J. Mater. Chem. C 2017, 5, 6030–6036;
- 6iC. Felip-León, F. Galindo, J. F. Miravet, Nanoscale 2018, 10, 17060–17069;
- 6jY. Li, Q. Li, A. Gao, J. Wu, Y. Wu, X. Cao, Supramol. Chem. 2019, 31, 625–633;
- 6kM. Kumar, D. Sementa, V. Narang, E. Riedo, R. V. Ulijn, Chem. Eur. J. 2020, 26, 8372–8376;
- 6lE. Calatrava-Pérez, S. Acherman, L. Stricker, G. McManus, J. Delente, A. D. Lynes, A. F. Henwood, J. I. Lovitt, C. S. Hawes, K. Byrne, W. Schmitt, O. Kotova, T. Gunnlaugsson, E. M. Scanlan, Org. Biomol. Chem. 2020, 18, 3475–3480;
- 6mJ. I. Lovitt, T. Gorai, E. Cappello, J. M. Delente, S. T. Barwich, M. E. Möbius, T. Gunnlaugsson, C. S. Hawes, Mater. Chem. Front. 2021, 5, 3458–3469;
- 6nS. A. Murphy, C. A. Phelan, E. B. Veale, O. Kotova, S. Comby, T. Gunnlaugsson, Org. Biomol. Chem. 2021, 19, 6817–6833;
- 6oR. Raza, C. Pati, N. Baildya, K. Ghosh, New J. Chem. 2023, 47, 11515–11524;
- 6pH.-Q. Dong, T.-B. Wei, X.-Q. Ma, Q.-Y. Yang, Y.-F. Zhang, Y.-J. Sun, B.-B. Shi, H. Yao, Y.-M. Zhang, Q. Lin, J. Mater. Chem. C 2020, 8, 13501–13529;
- 6qL. Gopala, Y. Cha, M. H. Lee, Dyes Pigm. 2022, 201, 110195;
- 6rB. Das, S. Lohar, A. Patra, E. Ahmmed, S. K. Mandal, J. N. Bhakta, K. Dhara, P. Chattopadhyay, New J. Chem. 2018, 42, 13497–13502;
- 6sA. Singh, M. Chaudhary, M. Verma, N. Kaur, N. Singh, New J. Chem. 2023, 47, 22430–22440.
- 7
- 7aS. Banerjee, E. B. Veale, C. M. Phelan, S. A. Murphy, G. M. Tocci, L. J. Gillespie, D. O. Frimannsson, J. M. Kelly, T. Gunnlaugsson, Chem. Soc. Rev. 2013, 42, 1601–1618;
- 7bS. Lohar, A. Maji, S. Pal, S. K. Mukhopadhyay, D. Nag, N. Demitri, P. Chattopadhyay, ChemistrySelect 2017, 2, 9977–9983;
- 7cF. Ye, N. Wu, P. Li, Y.-L. Liu, S.-J. Li, Y. Fu, Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 222, 117242;
- 7dA. Silswal, P. Weslie, A. L. Koner, Talanta 2023, 254, 124147;
- 7eS. Biswas, T. Dutta, A. Silswal, R. Bhowal, D. Chopra, A. L. Koner, Chem. Sci. 2021, 12, 9630–9644;
- 7fG. S. Ravi Kumara, A. Pandith, Y. J. Seo, Analyst 2020, 145, 4777–4781.
- 8S. Misra, P. Singh, A. Das, P. Brandão, P. Sahoo, N. Sepay, G. Bhattacharjee, P. Datta, A. K. Mahapatra, B. Satpati, J. Nanda, Mater. Adv. 2020, 1, 3532–3538.
- 9Q. Wang, H. Wu, A. Gao, X. Ge, X. Chang, X. Cao, Chin. Chem. Lett. 2023, 34, 107644.
- 10X. Pang, X. Yu, H. Lan, X. Ge, Y. Li, X. Zhen, T. Yi, ACS Appl. Mater. Interfaces 2015, 7, 13569–13577.
- 11
- 11aK. Liu, L. Meng, S. Mo, M. Zhang, Y. Mao, X. Cao, C. Huang, T. Yi, J. Mater. Chem. C 2013, 1, 1753–1762;
- 11bX. Cao, Y. Li, A. Gao, Y. Yu, Q. Zhou, X. Chang, X. Hei, J. Mater. Chem. C 2019, 7, 10589–10597;
- 11cN. Singh, S. Sharma, R. Singh, S. Rajput, N. Chattopadhyay, D. Tewari, K. B. Joshi, S. Verma, Chem. Sci. 2021, 12, 16085–16091.
- 12
- 12aY. Bao, E. Guégain, V. Nicolas, J. Nicolas, Chem. Commun. 2017, 53, 4489–4492;
- 12bS. Ghosh, S. Bhattacharya, N. Baildya, N. Nath Ghosh, K. Ghosh, ChemistrySelect 2021, 6, 11696–11705.
- 13
- 13aX. Wang, M. Liu, Chem. Eur. J. 2014, 20, 10110–10116;
- 13bD. W. Cho, D. W. Cho, New J. Chem. 2014, 38, 2233–2236;
- 13cK. Gayen, S. Paul, S. Hazra, A. Banerjee, Langmuir 2021, 37, 9577–9587;
- 13dS. Basak, N. Nandi, A. Baral, A. Banerjee, Chem. Commun. 2015, 51, 780–783;
- 13eR. Chevigny, H. Rahkola, E. D. Sitsanidis, E. Korhonen, J. R. Hiscock, M. Pettersson, M. Nissinen, Chem. Mater. 2024, 36, 407–416;
- 13fA. D. Martin, J. P. Wojciechowski, M. M. Bhadbhade, P. Thordarson, Langmuir 2016, 32, 2245–2250;
- 13gS. Manchineella, V. Prathyusha, U. D. Priyakumar, T. Govindaraju, Chem. Eur. J. 2013, 19, 16615–16624.
- 14
- 14aA. Sikder, J. Sarkar, T. Sakurai, S. Seki, S. Ghosh, Nanoscale 2018, 10, 3272–3280;
- 14bT. A. Gudmundsson, G. Kuppadakkath, D. Ghosh, M. Ruether, A. Seddon, R. E. Ginesi, J. Doutch, D. J. Adams, T. Gunnlaugsson, K. K. Damodaran, Nanoscale 2024, 16, 8922–8930;
- 14cH. Kar, G. Ghosh, S. Ghosh, Chem. Eur. J. 2017, 23, 10536–10542.
- 15
- 15aS. Misra, P. Singh, A. K. Singh, L. Roy, S. Kuila, S. Dey, A. K. Mahapatra, J. Nanda, J. Phys. Chem. B 2022, 126, 10882–10892;
- 15bS. Kuila, A. K. Singh, A. Shrivastava, S. Dey, T. Singha, L. Roy, B. Satpati, J. Nanda, J. Phys. Chem. B 2023, 127, 4808–4819;
- 15cS. Ahmed, B. Pramanik, K. N. A. Sankar, A. Srivastava, N. Singha, P. Dowari, A. Srivastava, K. Mohanta, A. Debnath, D. Das, Sci. Rep. 2017, 7, 9485;
- 15dK. Gayen, S. Hazra, A. K. Pal, S. Paul, A. Datta, A. Banerjee, Soft Matter 2021, 17, 7168–7176;
- 15eL. Ji, Y. Liu, Z. Li, G. Ouyang, M. Liu, Chem. Commun. 2021, 57, 11314–11317;
- 15fP. Singh, S. Misra, N. Sepay, S. Mondal, D. Ray, V. K. Aswal, J. Nanda, Soft Matter 2020, 16, 6599–6607.
- 16
- 16aP. Sahoo, D. K. Kumar, S. R. Raghavan, P. Dastidar, Chem. Asian J. 2011, 6, 1038–1047;
- 16bY. Yin, Z. Gao, Y. Bao, B. Hou, H. Hao, D. Liu, Y. Wang, Ind. Eng. Chem. Res. 2014, 53, 1286–1292.
- 17
- 17aS. Misra, S. Mukherjee, A. Ghosh, P. Singh, S. Mondal, D. Ray, G. Bhattacharya, D. Ganguly, A. Ghosh, V. K. Aswal, A. K. Mahapatra, B. Satpati, J. Nanda, Chem. Eur. J. 2021, 27, 16744–16753;
- 17bP. Singh, S. Misra, A. Das, S. Roy, P. Datta, G. Bhattacharjee, B. Satpati, J. Nanda, ACS Appl. Bio Mater. 2019, 2, 4881–4891;
- 17cB. Adhikari, J. Nanda, A. Banerjee, Chem. Eur. J. 2011, 17, 11488–11496;
- 17dC. Pati, K. Ghosh, Supramol. Chem. 2019, 31, 732–744;
- 17eS. Mondal, M. Baidya, D. Haldar, ChemistrySelect 2023, 8, e202302771.
- 18
- 18aJ.-S. Zhao, Y.-B. Ruan, R. Zhou, Y.-B. Jiang, Chem. Sci. 2011, 2, 937–944;
- 18bF. Würthner, Chem. Commun. 2004, 1564–1579;
- 18cH. Fu, D. Xiao, J. Yao, G. Yang, Angew. Chem. Int. Ed. 2003, 42, 2883–2886;
- 18dY. Lu, Z. Shen, C. Lian, J. Wu, M. Liu, Z. Guo, Soft Matter 2023, 19, 4909–4915.
- 19
- 19aM. A. Martínez, A. Doncel-Giménez, J. Cerdá, J. Calbo, R. Rodríguez, J. Aragó, J. Crassous, E. Ortí, L. Sánchez, J. Am. Chem. Soc. 2021, 143, 13281–13291;
- 19bL. Qin, F. Xie, X. Jin, M. Liu, Chem. Eur. J. 2015, 21, 11300–11305.
- 20M. Y. Berezin, S. Achilefu, Chem. Rev. 2010, 110, 2641–2684.
- 21
- 21aJ. Humphreys, C. E. Killalea, F. Pop, E. S. Davies, G. Siligardi, D. B. Amabilino, Chirality 2023, 35, 281–297;
- 21bG. Pescitelli, L. Di Bari, N. Berova, Chem. Soc. Rev. 2014, 43, 5211–5233.
- 22B. Adhikari, J. Nanda, A. Banerjee, Soft Matter 2011, 7, 8913–8922.
- 23
- 23aS. Bera, S. Basu, B. Jana, P. Dastidar, Angew. Chem. Int. Ed. 2023, 62, e202216447;
- 23bW.-Z. Wang, C. Gao, Q. Zhang, X.-H. Ye, D.-H. Qu, Chem. Asian J. 2017, 12, 410–414;
- 23cS. Guha, M. G. B. Drew, A. Banerjee, Small 2008, 4, 1993–2005;
- 23dC. C. Lee, C. Grenier, E. W. Meijer, A. P. H. J. Schenning, Chem. Soc. Rev. 2009, 38, 671–683;
- 23eM. Yamauchi, T. Ohba, T. Karatsu, S. Yagai, Nat. Commun. 2015, 6, 8936;
- 23fA. Ajayaghosh, R. Varghese, S. Mahesh, V. K. Praveen, Angew. Chem. Int. Ed. 2006, 45, 7729–7732;
- 23gJ. Buendía, J. Calbo, F. García, J. Aragó, P. M. Viruela, E. Ortí, L. Sánchez, Chem. Commun. 2016, 52, 6907–6910.